Серед 25 учнів 8 класу вирішили влаштувати математичні змагання та об'єднали у дві команди. Учасникам та учасницям роздали по 30 аркушів на команду для роботи. Визначте, скільки аркушів витратила друга команда, якщо відомо, що кожному члену першої знадобилось на 1 аркуш менше.
Сначала находим вершину. Пусть А(m;n) - вершина параболы =>
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
значение у) на промежутке (-∞;1];
убывает (большему значению х соответствует меньшее
значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)
1. Записать в стандартном виде многочлен : 5х·3у²-2х²у-4ху·7у+0,5ух·5х=15ху²-2х²у-28ху²+2,5х²у=-13ху²+0,5х²у
2. Преобразовать в многочлен стандартного вида : (у³+у²-у)-(у²+у-1)=у³+у²-у-у²-у+1=у³-2у+1
3. Вычислить значение выражения : 3х²-(7ху-4х²)+(5ху-7х²) ,при х=0,3 ; у= -10
3х²-(7ху-4х²)+(5ху-7х²)=3х²-7ху+4х²+5ху-7х²=-2ху -2*0,3*(-10)=6
4.Упростить выражение : (4а²)²-2а³(1+8а)=16а^4-2а³-16a^4=-2а³
5. Упростить выражение : (а+b)(а+2)-(а-b)(а-2)-2аb=а²+2a+ab+2b-а²+2a+ab-2b-2аb=4a
6. Раскрыть скобки используя соответствующее правило : а) 3а²+(а-5)=3а²+а-5 ; б) 5-(4а+5)=5-4а-5=-4a
7. Упростить выражение : а) х-(3х+5)+(2х-4)=х-3х-5+2х-4=-9 ; б) (3а²-4b+5)+(2b-а²-1)=3а²-4b+5+2b-а²-1=2а²-2b+4
8. Решить уравнение : 3х-5+2х-7=-2
5х-12=-2
5x=10
x=2
9. Выполнить умножение: а) -4у(2х-5у+1)=-8xy+20y²-4y; б) 8а²(а-3а³)=8a³-24a^5
10. Упростить выражение : а) 5(х-8)-2(5+х)=5x-40-10-2x=3x-50 ; б) х(х²+х-2)-х²(х-1)=x³+x-2x-x³+x²=2x²-2x
11. Упростить выраж. : у²(у³+у-2)-у(у³+1)+2у²-у³ =y^5+y³-2y²-y^4-y+2y²-y³=y^5-y^4-y
^ - знак степени