https://www.kontrolnaya-rabota.ru/s/equal-many/system-any/?ef-TOTAL_FORMS=52&ef-INITIAL_FORMS=2&ef-MIN_NUM_FORMS=0&ef-MAX_NUM_FORMS=1000&ef-0-s=11x%5E2-7x-10%3Dx%5E2%2B9x-2&ef-1-s=&ef-2-s=&ef-3-s=&ef-4-s=&ef-5-s=&ef-6-s=&ef-7-s=&ef-8-s=&ef-9-s=&ef-10-s=&ef-11-s=&ef-12-s=&ef-13-s=&ef-14-s=&ef-15-s=&ef-16-s=&ef-17-s=&ef-18-s=&ef-19-s=&ef-20-s=&ef-21-s=&ef-22-s=&ef-23-s=&ef-24-s=&ef-25-s=&ef-26-s=&ef-27-s=&ef-28-s=&ef-29-s=&ef-30-s=&ef-31-s=&ef-32-s=&ef-33-s=&ef-34-s=&ef-35-s=&ef-36-s=&ef-37-s=&ef-38-s=&ef-39-s=&ef-40-s=&ef-41-s=&ef-42-s=&ef-43-s=&ef-44-s=&ef-45-s=&ef-46-s=&ef-47-s=&ef-48-s=&ef-49-s=&ef-50-s=&ef-51-s=
Объяснение:ЭТО ССЫЛКА НА РЕШЕНИЕ
УДАЧИ
<> [ Здравствуйте, Dodododpdododp! ] <>
- - - -
<> [ • ответ и Объяснение: ] <>
<> [ Нет, Вы не правы. Оно не имеет бесконечное множество решений. Потому что: ] <>
<> [ • (x, y) = (0, 1) ] <>
<> [ А теперь, если Вы не верите, то мы можем даже и проверить, является ли упорядоченная пара чисел выше решением системы уравнений: ] <>
{ 0 + 1 = 1
{
{ 0 + 4 x 1 = 4
<> [ А у мы это так: ] <>
{ 1 = 1
{ 4 = 4
<> [ Итог: Упорядоченная пара чисел является решением системы уравнений, так как оба равенства верны. ] <>
<> [ С уважением, Hekady! ] <>
https://www.kontrolnaya-rabota.ru/s/equal-many/system-any/?ef-TOTAL_FORMS=52&ef-INITIAL_FORMS=2&ef-MIN_NUM_FORMS=0&ef-MAX_NUM_FORMS=1000&ef-0-s=11x%5E2-7x-10%3Dx%5E2%2B9x-2&ef-1-s=&ef-2-s=&ef-3-s=&ef-4-s=&ef-5-s=&ef-6-s=&ef-7-s=&ef-8-s=&ef-9-s=&ef-10-s=&ef-11-s=&ef-12-s=&ef-13-s=&ef-14-s=&ef-15-s=&ef-16-s=&ef-17-s=&ef-18-s=&ef-19-s=&ef-20-s=&ef-21-s=&ef-22-s=&ef-23-s=&ef-24-s=&ef-25-s=&ef-26-s=&ef-27-s=&ef-28-s=&ef-29-s=&ef-30-s=&ef-31-s=&ef-32-s=&ef-33-s=&ef-34-s=&ef-35-s=&ef-36-s=&ef-37-s=&ef-38-s=&ef-39-s=&ef-40-s=&ef-41-s=&ef-42-s=&ef-43-s=&ef-44-s=&ef-45-s=&ef-46-s=&ef-47-s=&ef-48-s=&ef-49-s=&ef-50-s=&ef-51-s=
Объяснение:ЭТО ССЫЛКА НА РЕШЕНИЕ
УДАЧИ
<> [ Здравствуйте, Dodododpdododp! ] <>
- - - -
<> [ • ответ и Объяснение: ] <>
- - - -
<> [ Нет, Вы не правы. Оно не имеет бесконечное множество решений. Потому что: ] <>
- - - -
<> [ • (x, y) = (0, 1) ] <>
- - - -
<> [ А теперь, если Вы не верите, то мы можем даже и проверить, является ли упорядоченная пара чисел выше решением системы уравнений: ] <>
- - - -
{ 0 + 1 = 1
{
{ 0 + 4 x 1 = 4
- - - -
<> [ А у мы это так: ] <>
- - - -
{ 1 = 1
{
{ 4 = 4
- - - -
<> [ Итог: Упорядоченная пара чисел является решением системы уравнений, так как оба равенства верны. ] <>
- - - -
<> [ С уважением, Hekady! ] <>