Все значения a при которых функция y=2x^2-(4-a^2)x+3 является четной, принадлежат промежутку : A) [-2;4] B)(1;7] C)[-3;3) D)[-3;2) E)[0;1] F)[-5;5] G)(0;5) H)(-2;3)
Графически неравенство x^2+6x-18< 0 представляет собой ту часть параболы у = x^2+6x-18, которая расположена ниже оси ординат(это ось ох).поэтому находим точки пересечения этой параболы с осью ох - в этих точках значение у = 0: х² + 6х - 18 = 0 квадратное уравнение, решаем относительно x: ищем дискриминант: d=6^2-4*1*(-18)=36-4*(-18)=*18)=)=36+72=108; дискриминант больше 0, уравнение имеет 2 корня: x_1=(√108-6)/(2*1)=√108/2-6/2=(√108/2)-3 ≈ 2.19615; x_2=(-√108-6)/(2*1)=-√108/2-6/2=(-√108/2)-3 ≈ -8.19615.отсюда ответ: