Пусть мы красим в белый и черные цвета. Заметим, что в любой правильной раскраске должно быть поровну обоих цветов. Иначе в каком-нибудь квадрате 2x2 найдется три клетки одного цвета, что невозможно. Теперь будем по порядку рассматривать квадраты 2x2. Пусть изначально прямоугольника покрашен в шахматную расцветку. Для того, чтобы получать новую раскраску будем двигать черные (без ограничения общности - двигая черные мы, грубо говоря, двигаем и белые) клетки (в квадратах, двигаясь слева направо), причем так, чтобы не возникало уголков. Действительно, если они будут возникать, то их придется устранять и тем самым создавать их в квадратах, расположенных правее и в конце концов упремся. Таким образом, для первого квадрата существует три движения (включая тождественную перестановку). Для второго квадрата существует два варианта - если мы двигали черную клетку, стоящую в пересечении первого и второго квадратов, то движений 2, если нет - то три. Итак, можно построить дерево (см. рис.). При переходе по стрелке мы умножаем числа, стоящие в вершинах. В конце концов, числа до которых нельзя добраться, складываем. Итог - кол-во Докажем по индукции, что искомое количество равно , где n - номер уровня (ступени).
База очевидна: при n=1 результат 3, что верно.
Переход: пусть для некоторого n=k верно. Докажем, что верно и для n=k+1. Рассмотрим k+1-ый уровень. Количество троек равно количеству двоек. Поэтому каждое слагаемое, входящее в сумму, которая равна можно умножить сначала на тройки, а потом на двойки, что равнозначно , переход доказан.
Не забудем итоговый ответ также домножить на два, так как существует две различные шахматные расцветки прямоугольника.
Аличие единичного элемента N = 1 (Множество натуральных чисел имеет как минимум 1 элемент) Наличие функции S(N) такой, что S(N) всегда принадлежит N (Для каждого элемента есть задать минимум один соседний элемент) Отсутствие элементов, таких что S(N) = 1 (Для единичного ровно один) Отсутствие элементов, таких что для элементов N1,N2 S(N1) = S(N2) (Для прочих не более двух, и этот однозначен для всех элементов N) Отсутствие элементов, таких что зависящий от элемента N предикат P(N) ложен если P(1), P(N) и P(S(N)) истинны. (Прочие же свойства натуральных чисел одинаковы, какие бы натуральные числа мы не брали, и какие бы их свойства не исследовали
Пусть мы красим в белый и черные цвета. Заметим, что в любой правильной раскраске должно быть поровну обоих цветов. Иначе в каком-нибудь квадрате 2x2 найдется три клетки одного цвета, что невозможно. Теперь будем по порядку рассматривать квадраты 2x2. Пусть изначально прямоугольника покрашен в шахматную расцветку. Для того, чтобы получать новую раскраску будем двигать черные (без ограничения общности - двигая черные мы, грубо говоря, двигаем и белые) клетки (в квадратах, двигаясь слева направо), причем так, чтобы не возникало уголков. Действительно, если они будут возникать, то их придется устранять и тем самым создавать их в квадратах, расположенных правее и в конце концов упремся. Таким образом, для первого квадрата существует три движения (включая тождественную перестановку). Для второго квадрата существует два варианта - если мы двигали черную клетку, стоящую в пересечении первого и второго квадратов, то движений 2, если нет - то три. Итак, можно построить дерево (см. рис.). При переходе по стрелке мы умножаем числа, стоящие в вершинах. В конце концов, числа до которых нельзя добраться, складываем. Итог - кол-во Докажем по индукции, что искомое количество равно , где n - номер уровня (ступени).
База очевидна: при n=1 результат 3, что верно.
Переход: пусть для некоторого n=k верно. Докажем, что верно и для n=k+1. Рассмотрим k+1-ый уровень. Количество троек равно количеству двоек. Поэтому каждое слагаемое, входящее в сумму, которая равна можно умножить сначала на тройки, а потом на двойки, что равнозначно , переход доказан.
Не забудем итоговый ответ также домножить на два, так как существует две различные шахматные расцветки прямоугольника.
Имеем квадратов, а, стало быть, уровней. ;
ответ:
Наличие функции S(N) такой, что S(N) всегда принадлежит N (Для каждого элемента есть задать минимум один соседний элемент)
Отсутствие элементов, таких что S(N) = 1 (Для единичного ровно один)
Отсутствие элементов, таких что для элементов N1,N2 S(N1) = S(N2) (Для прочих не более двух, и этот однозначен для всех элементов N)
Отсутствие элементов, таких что зависящий от элемента N предикат P(N) ложен если P(1), P(N) и P(S(N)) истинны. (Прочие же свойства натуральных чисел одинаковы, какие бы натуральные числа мы не брали, и какие бы их свойства не исследовали