Пошаговое объяснение:
Теория:
Координаты вектора
Пусть даны точки X(x₁, x₂), Y(y₁, y₂), тогда
\overrightarrow{XY}=(y_1-x_1;y_2-x_2)
Длина вектора
Пусть дан вектор a{a₁, a₂}, тогда
|\overrightarrow{a}|=\sqrt{ a_1^2+a_2^2}
Скалярное произведение (по координатам)
Пусть даны векторы a{a₁, a₂} и b{b₁, b₂}, тогда
\overrightarrow{a}\cdot\overrightarrow{b}=a_1\cdot b_1+a_2\cdot b_2
Угол между векторами
Пусть даны векторы a и b и ∠(a, b) = α, тогда
cos\alpha =\frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}|\cdot|\overrightarrow{b}|}
Умножение вектора на число, сложение и вычитание векторов проводится покоординатно.
1)\\ \overrightarrow{AC}=(3-2;2-(-1))=(1;2+1)=(1;3)\\ \overrightarrow{AD}=(-3-2;1-(-1))=(-5;1+1)=(-5;2)\\ \\ 2)\\ |\overrightarrow{AC}|=\sqrt{ 1^2+3^2}=\sqrt{1+9}=\sqrt{10}\\ |\overrightarrow{AD}|=\sqrt{ (-5)^2+2^2}=\sqrt{25+4}=\sqrt{29}\\ \\ 3)\\ 3\overrightarrow{AC}=(3\cdot1;3\cdot3)=(3;9)\\ 2\overrightarrow{AD}=(2\cdot(-5);2\cdot2)=(-10;4)\\ \overrightarrow{EF}=3\overrightarrow{AC}-2\overrightarrow{AD}=(3-(-10);9-4)=(13;5)
4)\quad \overrightarrow{AC}\cdot\overrightarrow{AD}=1\cdot(-5)+3\cdot2=-5+6=1\\ \\ 5)\quad cos\angle(\overrightarrow{AC},\overrightarrow{AD}) =\frac{\overrightarrow{AC}\cdot\overrightarrow{AD}}{|\overrightarrow{AC}|\cdot|\overrightarrow{AD}|}=\frac{1}{\sqrt{10}\cdot\sqrt{29}}=\frac{1}{\sqrt{290}} =\frac{\sqrt{290}}{290}
ответ:Определим длину окружности при различных размерах радиуса по формуле С - длина окружности с радиусом r, п = 3,14, тогда получим:
1. Если радиус равен 24 см, тогда:
С = 2 * 3,14 * 24 см = 6,28 * 24 см = 150,72 см.
2. Если радиус равен 4,7 дм, тогда:
С = 2 * 3,14 * 4,7 дм = 6,28 * 4,7 дм = 29,516 дм.
3. Если радиус равен 18,5 м, тогда:
С = 2 * 3,14 * 18,5 м = 6,28 * 18,5 м = 116,18 м.
ответ: в итоге получили, что окружность при радиусе 24 см будет равна 150,72 см; при радиусе, равном 4,7 дм длина окружности составит 29,516 дм, а при радиусе, равном 18,5 м, длина окружности будет составлять 116,18 м.
Пошаговое объяснение:
Теория:
Координаты вектора
Пусть даны точки X(x₁, x₂), Y(y₁, y₂), тогда
\overrightarrow{XY}=(y_1-x_1;y_2-x_2)
Длина вектора
Пусть дан вектор a{a₁, a₂}, тогда
|\overrightarrow{a}|=\sqrt{ a_1^2+a_2^2}
Скалярное произведение (по координатам)
Пусть даны векторы a{a₁, a₂} и b{b₁, b₂}, тогда
\overrightarrow{a}\cdot\overrightarrow{b}=a_1\cdot b_1+a_2\cdot b_2
Угол между векторами
Пусть даны векторы a и b и ∠(a, b) = α, тогда
cos\alpha =\frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}|\cdot|\overrightarrow{b}|}
Умножение вектора на число, сложение и вычитание векторов проводится покоординатно.
1)\\ \overrightarrow{AC}=(3-2;2-(-1))=(1;2+1)=(1;3)\\ \overrightarrow{AD}=(-3-2;1-(-1))=(-5;1+1)=(-5;2)\\ \\ 2)\\ |\overrightarrow{AC}|=\sqrt{ 1^2+3^2}=\sqrt{1+9}=\sqrt{10}\\ |\overrightarrow{AD}|=\sqrt{ (-5)^2+2^2}=\sqrt{25+4}=\sqrt{29}\\ \\ 3)\\ 3\overrightarrow{AC}=(3\cdot1;3\cdot3)=(3;9)\\ 2\overrightarrow{AD}=(2\cdot(-5);2\cdot2)=(-10;4)\\ \overrightarrow{EF}=3\overrightarrow{AC}-2\overrightarrow{AD}=(3-(-10);9-4)=(13;5)
4)\quad \overrightarrow{AC}\cdot\overrightarrow{AD}=1\cdot(-5)+3\cdot2=-5+6=1\\ \\ 5)\quad cos\angle(\overrightarrow{AC},\overrightarrow{AD}) =\frac{\overrightarrow{AC}\cdot\overrightarrow{AD}}{|\overrightarrow{AC}|\cdot|\overrightarrow{AD}|}=\frac{1}{\sqrt{10}\cdot\sqrt{29}}=\frac{1}{\sqrt{290}} =\frac{\sqrt{290}}{290}
ответ:Определим длину окружности при различных размерах радиуса по формуле С - длина окружности с радиусом r, п = 3,14, тогда получим:
1. Если радиус равен 24 см, тогда:
С = 2 * 3,14 * 24 см = 6,28 * 24 см = 150,72 см.
2. Если радиус равен 4,7 дм, тогда:
С = 2 * 3,14 * 4,7 дм = 6,28 * 4,7 дм = 29,516 дм.
3. Если радиус равен 18,5 м, тогда:
С = 2 * 3,14 * 18,5 м = 6,28 * 18,5 м = 116,18 м.
ответ: в итоге получили, что окружность при радиусе 24 см будет равна 150,72 см; при радиусе, равном 4,7 дм длина окружности составит 29,516 дм, а при радиусе, равном 18,5 м, длина окружности будет составлять 116,18 м.
Пошаговое объяснение: