нужно решение с чертежом! В треугольнике АВС стороны АВ и BС равны, ∠ACB = 75°. На стороне ВС взяли точки Х и Y так, что точка Х лежит между точками В и Y, AX = BX и ∠BAX = ∠YAX . Найдите длину отрезка AY, если AX =10. Запишите решение и ответ.
сдесь мы раскрыли скобки) = -x^2-10xy-25y^2+22xy+9y^2-12xy+4x^2 (привели подобные члены) = 3x^2+0-16y^2 (сократили подобные коэффициенты) = 3x^2+0-16y^2 = 3x^2-16y^2 (избавились от нуля, т.к. в нашем случае он не значим)
ответ: На рисунку 162 АО=СО, ﮮAОВ = ﮮСОВ. Доведіть, що трикутник АВС рівнобедрений.
Розв'язання.
Розглянемо трикутники АВО і СОВ. За умовою АО=СО, ﮮAОВ = ﮮСОВ, а сторона ОВ – спільна. Тому за двома сторонами та кутом між ними трикутники рівні. У рівних трикутників рівні відповідні сторони. Маємо ВА = ВС. Такий трикутник АСВ за означенням рівнобедрений.
Задача 212. Трикутник АВС — рівнобедрений з основою АС, ВD — його бісектриса, DМ — бісектриса трикутника ВDС. Знайдіть кут ADМ.
Розв'язання.
За умовою трикутник АВС — рівнобедрений з основою АС. У рівнобедреному трикутнику АВС бісектриса, медіана та висота, проведені до його основи збігаються. З означення висоти маємо ADB = CDB = 90˚. З означення бісектриси маємо BDM = ½ CDB = ½ 90˚ = 45˚. За основною властивістю величини кута ADM = ADB + BDM = 90˚ + 45˚ = 135˚.
Задача 213. Один учень стверджує, що деякий трикутник рівнобедрений, а другий учень — що цей трикутник рівносторонній.
1) Чи можуть обидва учні бути правими?
2) У якому випадку правий тільки один учень і який саме?
Розв'язання.
1) Так, якщо трикутник рівносторонній, то він є рівнобедреним.
2) Якщо у рівнобедреного трикутника довжини бічної сторони та основи різні, тоді неправий учень, що стверджує про рівносторонній трикутник.
Чтобы было проще решать, сначала упростим выражение, а потом уже подставим значения по условию
-(-х-5у)² +22ху + (3у - 2х)² = -(x^2+10xy+25y^2)+22xy+9y^2-12xy+4x^2 (
сдесь мы раскрыли скобки) = -x^2-10xy-25y^2+22xy+9y^2-12xy+4x^2 (привели подобные члены) = 3x^2+0-16y^2 (сократили подобные коэффициенты) = 3x^2+0-16y^2 = 3x^2-16y^2 (избавились от нуля, т.к. в нашем случае он не значим)
Подставляем значения:
3x^2-16y^2 при x=-3; y=2. Получаем:
(3 • (-3)^2) - ( 16 • 2^2) = (-3^3)-16•4 = (-27) - 64 = -91
ответ: -91
ответ: На рисунку 162 АО=СО, ﮮAОВ = ﮮСОВ. Доведіть, що трикутник АВС рівнобедрений.
Розв'язання.
Розглянемо трикутники АВО і СОВ. За умовою АО=СО, ﮮAОВ = ﮮСОВ, а сторона ОВ – спільна. Тому за двома сторонами та кутом між ними трикутники рівні. У рівних трикутників рівні відповідні сторони. Маємо ВА = ВС. Такий трикутник АСВ за означенням рівнобедрений.
Задача 212. Трикутник АВС — рівнобедрений з основою АС, ВD — його бісектриса, DМ — бісектриса трикутника ВDС. Знайдіть кут ADМ.
Розв'язання.
За умовою трикутник АВС — рівнобедрений з основою АС. У рівнобедреному трикутнику АВС бісектриса, медіана та висота, проведені до його основи збігаються. З означення висоти маємо ADB = CDB = 90˚. З означення бісектриси маємо BDM = ½ CDB = ½ 90˚ = 45˚. За основною властивістю величини кута ADM = ADB + BDM = 90˚ + 45˚ = 135˚.
Задача 213. Один учень стверджує, що деякий трикутник рівнобедрений, а другий учень — що цей трикутник рівносторонній.
1) Чи можуть обидва учні бути правими?
2) У якому випадку правий тільки один учень і який саме?
Розв'язання.
1) Так, якщо трикутник рівносторонній, то він є рівнобедреним.
2) Якщо у рівнобедреного трикутника довжини бічної сторони та основи різні, тоді неправий учень, що стверджує про рівносторонній трикутник.
Пошаговое объяснение: