3.Если проведем отрезок от другого конца диаметра до этой точки, то мы получим прямоугольный треугольник, так как в нем будет вписанный угол опирающийся на диаметр
1) Найдем диаметр она равен 10*2=20- это будет гипотенузой прямоугольного треугольника
Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
1.1) угол α-вписанный, значит, дуга AC=2*19=38
2) угол β-вписанный, значит, дуга AB=2*47=94
3) BD- диаметр, CD=180-(дуга АВ+ дуга АС)= 180-(38+94)=180-132=48
4) угол х- вписанный, Значит х=1/2 дуги CD=1/2*48=24
ответ: 24 (рисунок внизу)
2.1х+3х+5х=180
9х=180
х=20
1)20*1=20(1-ый угол)
2)20*3=60(2-ой угол)
3)20*5=100(3-ий угол)
Проверка:
20+60+80=180
3.Если проведем отрезок от другого конца диаметра до этой точки, то мы получим прямоугольный треугольник, так как в нем будет вписанный угол опирающийся на диаметр
1) Найдем диаметр она равен 10*2=20- это будет гипотенузой прямоугольного треугольника
2)по теореме Пифагора:
20²-16²=√400-256=√144=12
ответ:12 см
Объяснение: рисунок относится к первому заданию
Удачи!Объем конуса находят по формуле: V = 1/3 · Sосн · H, где Sосн - площадь основания, H - высота. В основании - круг, Sосн = πR², где R - радиус основания.
Пусть дан конус (см. рис.) . SО - высота, SВ - образующая, ОВ - радиус. По условию SО : SВ = 4 : 5 и V = 96π см³.
ΔSОВ - прямоугольный. Если принять, что SО = (4х) см, SВ = (5х) см, то по теореме Пифагора ОВ² = SВ² - SО² = (5х)² - (4х)² = 25х² - 16х² = 9х², откуда, учитывая, что длины сторон положительны, ОВ = 3х (см).
Подставляем полученные выражения в формулу объема:
V = 1/3 · πR² · H = 1/3 · π · ОВ² · SО = 1/3 · π · (3х)² · 4х = 12πх³ = 96π, т.е.
12πх³ = 96π,
х³ = 8,
х = 2.
Тогда ОВ = 3 · 2 = 6 (см), SB = 5 · 2 = 10 (см).
Площадь полной поверхности конуса равна:
Sполн = Sосн + Sбок = πR² + πRL = πR(R + L), где R - радиус основания, L - образующая конуса.
Значит, Sполн = π · ОВ · (ОВ + SВ) = π · 6 · (6 + 10) = 6π · 16 = 96π (см²).
ответ: 96 см².