Площадь квадрата равна 100. Если представить 100 в виде суммы натуральных чисел, то число слагаемых будет наибольшим, если разность между числами равна одному. Возьмем прямоугольники площади 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Их суммарная площадь равна 55. Значит, сумма площадей остальных прямоугольников равна 45. Заметим, что если площадь прямоугольника больше 10, то она не может быть простым числом, иначе такой прямоугольник имеет сторону больше 10 и не помещается в квадрат 10×10 . Составными числами больше десяти являются числа 12, 14, 15, 16, 18, 19,… Любые четыре из них в сумме дают число больше 45. Сумму, равную 45, дают, например, такие тричисла: 12,15,18 или 14,15,16. Получаем, что число прямоугольников меньше или равно 13. Пример возможного расположения для 13 прямоугольников приведен на рисунке.
обозначим длину боковой стороны (b)
одно основание обозначим (а), второе получится (4а)
Периметр = 2b + a + 4a
20 = 2b + 5a
если провести обе высоты трапеции, они отсекут от трапеции два равных прямоугольных треугольника, один катет будет = высоте = 4 см,
второй катет = (4а - а) / 2 = 3а / 2
тогда гипотенуза --- боковая сторона трапеции
b² = 4² + 9а² / 4
4b² = (2b)² = 64 + 9a²
(20 - 5a)² = 64 + 9a²
400 - 200a + 25a² - 64 - 9a² = 0
16a² - 200a + 336 = 0
2a² - 25a + 42 = 0
D=25*25-8*42 = 625-336 = 17²
(a)1;2 = (25+-17) / 4
a1 = 42/4 = 10.5 ---этот корень не подходит, т.к. тогда периметр будет > 20
a2 = 2
стороны трапеции: основания 2 и 8
боковые стороны (20-5а)/2 = 10/2 = 5
ПРОВЕРКА: периметр = 2+8+5+5 = 20