В треугольнике ABC, угол А=45 градусов, а высота BH делит сторону AC на отрезки АН и НB соответственно равны 4 см и 9 см. Найдите площадь треугольника ABC
Постройте профильные проекции прямой и треугольника.
Точка 1¹- проекция точки пересечения прямой и плоскости на виде спереди. Найдите проекцию 1¹¹ на виде слева.
Для того, чтобы определить видимость на виде слева, выберем совпадающие точки 2¹¹ и 3¹¹. Получив точки 2¹ и 3¹, видим,что треугольник к наблюдателю ближе, чем прямая. Видимость на виде слева определена.
Найдём проекцию 1 на виде сверху. На виде сверху возьмём совпадающие точки 4 и 5. Найдём их проекции на виде слева: 4¹¹ и 5¹¹. Видя, что 4¹¹, принадлежащая прямой, находится выше, чем 5¹¹ на а¹¹b¹¹, получаем, что на виде сверху в этом месте видна прямая.
Дан прямой цилиндр с радиусом круга 3 и высотой 4. Найдите V и
S( бок.поверхности) , вписанного в этот цилиндр прямого конуса (вершина конуса находится в центре одного из оснований цилиндра). ответы разделите на π и округлите до сотых, при необходимости.
Объяснение:
Если конус вписан в цилиндр , то основания совпадают, поэтому
r( конуса)=3.
Т.к. вершина конуса находится в центре верхнего основания цилиндра , то h( цилиндра)=h( конуса)=4.
ответ: Построение точки пересечения см. на фото.
Объяснение:
Задание относится к "Начертательной геометрии".
Постройте профильные проекции прямой и треугольника.
Точка 1¹- проекция точки пересечения прямой и плоскости на виде спереди. Найдите проекцию 1¹¹ на виде слева.
Для того, чтобы определить видимость на виде слева, выберем совпадающие точки 2¹¹ и 3¹¹. Получив точки 2¹ и 3¹, видим,что треугольник к наблюдателю ближе, чем прямая. Видимость на виде слева определена.
Найдём проекцию 1 на виде сверху. На виде сверху возьмём совпадающие точки 4 и 5. Найдём их проекции на виде слева: 4¹¹ и 5¹¹. Видя, что 4¹¹, принадлежащая прямой, находится выше, чем 5¹¹ на а¹¹b¹¹, получаем, что на виде сверху в этом месте видна прямая.
Надеюсь, что смогла вам
Дан прямой цилиндр с радиусом круга 3 и высотой 4. Найдите V и
S( бок.поверхности) , вписанного в этот цилиндр прямого конуса (вершина конуса находится в центре одного из оснований цилиндра). ответы разделите на π и округлите до сотых, при необходимости.
Объяснение:
Если конус вписан в цилиндр , то основания совпадают, поэтому
r( конуса)=3.
Т.к. вершина конуса находится в центре верхнего основания цилиндра , то h( цилиндра)=h( конуса)=4.
V(конуса )=1/3*S(осн)*h , V(пирам)=1/3*(π*3²)*4=12π .
S(бок.конуса )= π * r* L . Найдем L из прямоугольного треугольника по т. Пифагора L= √( 3³+4²)=√25=5.
S(бок.конуса )=π*3*5=15π.
ответ : V(пирам)/π=12 , S(бок.конуса )/π=15.