Пусть х и у - длины смежных сторон искомого прямоугольника. Обозначим d - его диагональ, p - полупериметр. Тогда x+y=p и x²+y²=d². Т.е. х и у - абсцисса и ордината точки пересечения прямой и окружности, заданных этими уравнениями. Поэтому процесс построения выглядит так: 1) Строим прямой угол с вершиной О (он задает оси декартовой системы координат). 2) Строим окружность с центром в О и радиуса d (ее уравнение x²+y²=d²). 3) На сторонах прямого угла отмечаем точки A и B на расстоянии p от точки О и проводим прямую AB (уравнение этой прямой x+y=p. Заметим также, что ∠OAB=45°). Пусть C - какая-нибудь точка пересечения этой прямой с окружностью. 4) Опускаем перепендикуляр CD на ОА, и перпендикуляр CE на OB. Тогда прямоугольник OECD - искомый. Действительно, его диагональ OC равна радиусу окружности, т.е.равна d. Его полупериметр равен EC+CD=OD+DA=OA=p, т.к. CD=DA, поскольку ∠OAB=45°.
Найдем длину окружности основания конуса. Так как развертка боковой поверхности полукруг, то: P = 2ПR P(осн.конуса) = 2ПR/2 = ПR Найдем радиус основания конуса: r = P / 2П r = ПR / 2П = R / 2 Рассмотрим осевое сечение конуса. Это равнобедренный треугольник. Высота конуса является высотой осевого сечения и делит его на два равных прямоугольных треугольника, у которых гипотенуза равна R, а катет R/2. Так как катет меньше гипотенузы в 2 раза, значит угол противолежащий этому катету равен 30°. 30° х 2 = 60° ответ: 60°.
1) Строим прямой угол с вершиной О (он задает оси декартовой системы координат).
2) Строим окружность с центром в О и радиуса d (ее уравнение x²+y²=d²).
3) На сторонах прямого угла отмечаем точки A и B на расстоянии p от точки О и проводим прямую AB (уравнение этой прямой x+y=p. Заметим также, что ∠OAB=45°). Пусть C - какая-нибудь точка пересечения этой прямой с окружностью.
4) Опускаем перепендикуляр CD на ОА, и перпендикуляр CE на OB. Тогда прямоугольник OECD - искомый.
Действительно, его диагональ OC равна радиусу окружности, т.е.равна d. Его полупериметр равен EC+CD=OD+DA=OA=p, т.к. CD=DA, поскольку ∠OAB=45°.
P = 2ПR
P(осн.конуса) = 2ПR/2 = ПR
Найдем радиус основания конуса:
r = P / 2П
r = ПR / 2П = R / 2
Рассмотрим осевое сечение конуса. Это равнобедренный треугольник. Высота конуса является высотой осевого сечения и делит его на два равных прямоугольных треугольника, у которых гипотенуза равна R, а катет R/2. Так как катет меньше гипотенузы в 2 раза, значит угол противолежащий этому катету равен 30°.
30° х 2 = 60°
ответ: 60°.