Пусть углы будут А В С, эти буквы легче набирать центр описанной окружности лежит на пересечении срединных перпендикуляров, проведя котрые и соединив центр описанной окружности с вершинами треугольника, получим три треугольника с основаниями равными длинам сторон а в с и высотами равными R радиусу описанной окружности. Искомая площадь равна сумме площадей этих 3-х треугольников
S=aR/2+bR/2+cR/2=R/2*(a+b+c)
Для определения сторон а в с воспользуемся теоремой синусов справедливой для вписанного треугольника
а/sinA=b/sinB=c/sinC=2R
выразив стороны получим a=2RsinA b=2RsinB c=2RsinC
центр описанной окружности лежит на пересечении срединных перпендикуляров, проведя котрые и соединив центр описанной окружности с вершинами треугольника, получим три треугольника
с основаниями равными длинам сторон а в с и высотами равными R радиусу
описанной окружности. Искомая площадь равна сумме площадей этих 3-х
треугольников
S=aR/2+bR/2+cR/2=R/2*(a+b+c)
Для определения сторон а в с воспользуемся теоремой синусов справедливой для вписанного треугольника
а/sinA=b/sinB=c/sinC=2R
выразив стороны получим
a=2RsinA
b=2RsinB
c=2RsinC
Тогда площадь равна:
S=R^2 *(sinA+sinB+sinC)