Точка дотику кола,вписаного в рівнобедрений трикутник,ділить його бічну сторону на відрізки 2 см і 3 см,рахуючи від вершини,що лежить проти основи .Знайти радіуси вписаного й описанного кіл трикутника.
Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
№1.
Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
=(20-16)(20+16)=4*36=144
см
ответ:12 см.
идеально
Объяснение:
Значит, РС+AD=2·15
РС+25=30
РС=5
ВС=ВР+РС
25=ВР+5
ВР=25-5=20
∠PAD=∠BPA - внутренние накрест лежащие при параллельных ВС и AD и секущей АР.
∠ВАР=∠РАD - биссектриса АР делит угол А пополам.
Значит ∠BPA =∠ВАР и треугольник АВР - равнобедренный АВ=ВР=20
Противоположные стороны параллелограмма равны CD=AB=20
Из треугольника АСD по теореме косинусов:
АС²=AD²+DC²-2·AD·DC·cos ∠D
(5√46)²=25²+20²-2·25·20·cos ∠D
1150=625+400-1000·cos ∠D
cos ∠D =-0,125
Противоположные углы параллелограмма равны
∠В=∠D
Из треугольника АBP по теореме косинусов:
АP²=AB²+BP²-2·AB·BP·cos ∠B
АP²=20²+20²-2·20·20·(-0,125)
АP²=400+400+100
АP²=900
AP=30
Р( трапеции АРСD)= АР+РС+СD+AD=30+5+20+25=80
ответ. Р=80