Решить задачи по плану в приложении
120. Через точку О пересечения диагоналей квадрата со стороной а проведена прямая ОК, перпендикулярная к плоскости квадрата. Найдите расстояние от точки К до вершин квадрата, если ОK = b.
121. В треугольнике ABC дано: ∠C = 90°, AC = 6 см, ВС = 8 см, СМ — медиана. Через вершину С проведена прямая СК, перпендикулярная к плоскости треугольника ABC, причем СК = 12 см. Найдите КМ.
122. Прямая CD перпендикулярна к плоскости правильного треугольника ABC. Через центр О этого треугольника проведена прямая ОК, параллельная прямой CD. Известно, что АВ = 16 √3 см, ОK = 12 см, CD = 16 см. Найдите расстояния от точек D и К до вершин А и В треугольника.
У параллельных прямых коэффициенты "к" равны.
Сторона АВ:
Уравнение прямой:
Будем искать уравнение в виде y = k · x + b .
В этом уравнении:
k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX);
b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY.
k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4;
b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 .
Искомое уравнение: y = 4 · x - 14 .
Сторона ВС:
k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5;
b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 .
Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД:
k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4;
b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 .
Искомое уравнение: y = 4 · x + 13 .
Сторона АД:
k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4;
b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 .
Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
1)
A(6,0)
B(0,8)
(3,4)
10
2)
O(3,7)
(x-3)^2+(y-7)^2=65
y=2x-5
Объяснение:
1) Если прямая пересекается с осью ox, то координата y точки пересечения равна 0. Подставляем это значение в уравнение прямой и, решая его, находим координату x точки пресечения.
(вычисления на скрине 1)
A(6,0)
B(0,8)
Координаты середины отрезка вычисляются по формуле (скрин 2)
Длина отрезка вычисляется по формуле (скрин 3)
2) Если прямые пересекаются, то координаты точки пересечения удовлетворяю каждому уравнению. Приравняем и решим относительно x, а потом подставим значение в любое уравнение (скрин 4)
Найдем радиус окружности (расстояние от O до B) и запишем уравнение окружности (скрин 5.1)
Параллельность = равенство угловых коэффициентов. Исходя из этого найдем b и запишем уравнение (скрин 5.2)
ꟷꟷꟷꟷꟷꟷ
Не забывайте сказать " "! и, если ответ удовлетворил, то выберите его как "Лучший"
Бодрого настроения и добра!
Успехов в учебе!