При паралельному перенесенні пряма а, рівняння якої 2х + y = 5, відображається на пряму і, що проходить через точку: б) в(2; 5). Запишіть рівняння прямої
усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
проведем через вершину сечение, перпендикулряное стороне основания. в нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из s на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
в этом треугольнике нам задан так же угол в 60 градусов.
усть скорость первого автомобилиста равна x км/ч, а длина пути равна s км [величина s введена для удобства, она потом сократится]. тогда скорость второго автомобилиста на 1-й половине пути равна x-15 км/ч. время, за которое 1-й автомобилист проехал весь путь равно t1 = s/x.второй автомобилист проехал 1-ю половину пути за время t2_1 = (s/2): (x-15) = s/(2*(x- а вторую половину пути – за время (s/2)/90 =s/180; время всюду измеряется в часах. по условию, t1 = t2_1+t2_2. получаем уравнение:
s/x = s/(2*(x-15)) + s/180
сократим (как и было обещано j ) на s и решим уравнение.
1/x = 1/(2*(x-15)) + 1/180 (2)
2*(x-15)*180 = 180*x + 2*(x-15)*x
(x-15)*180 = 90*x + (x-15)*x
180*x – 15*180 = 90*x + x2 – 15*x
180*x – 15*180 = 90*x + x2 – 15*x
x2 + (90-15 – 180)*x +15*180 = 0
x2 — 105*x +15*180 = 0
решим полученное квадратное уравнение.
d = 1052 – 4*15*180 = (7*15)2 – 4*15*(15*12) =
= 152*(72 – 4*12) = 152*(49 – 48) = 152
следовательно, уравнение (2) имеет 2 корня:
x1 = (105+15)/2 = 60; x2 = (105-15)/2 = 45
так как x> 54, то x=60
ответ 60
проведем через вершину сечение, перпендикулряное стороне основания. в нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из s на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
в этом треугольнике нам задан так же угол в 60 градусов.
далее все очевидно
d*cos(60) = a/2; sбок = 4*d*a/2 = 4*(a/2)^2/cos(60);
a/2 = 2/sin(60); (a/2)^2 = 4/(3/4) = 16/3;
sбок = 2*4*16/3 = 128/3
площадь основания в 2 раза меньше (sбок*cos( это 64/3. а вся площадь поверхности будет 64.