подставляем координаты точек В D и С 2а-d=0 4b-d=0 3a+3b+3√2c-d=0
положим а=2 , тогда b=1 d=4 c=-5/(3√2) нормализуем уравнение плоскости. коэффициент √(4+1+25/18)=√(115/18)= к
2/к*x + 1/k*y - 5/(3√2k)z -4/k=0 расстояние до точки (1;0;0) подставляем в уравнение 2/к- 4/к = -2/к = -2√18/√115=-6√230/115 расстояние модуль этого числа 6√230/115. рисунок есть у ранее решившего :)
Треугольник ADB - равнобедренный, так как у него две стороны DB и AD равны. Следовательно, угол DAB (угол при основании равнобедренного треугольника) равен второму углу при основании DBA. По условию, так как AD - биссектриса, угол DAB = углу DAC и углу DBA (как только что определили).
Теперь рассмотрим большой треугольник АВС.
В нем угол CBA = Альфа, а угол ВАС = 2*Альфа (так как биссектриса делит угол пополам, и каждая половинка угла равна Альфа, как мы определились).
Зная, что сумма углов треугольника равна 180 градусов, составляем уравнение:
Значит, каждый из углов треугольника равны 60 градусов, а это означает, что треугольник равносторонний. У него все стороны равны. То есть сторона АВ=ВС=АС=b или с (сторона АВ = с, АС=b, так как АВ=АС, то и с=b). В дальшейшем будем считать, что у нас одно число b, раз уж они равны.
В равностороннем треугольнике биссектриса является медианой и высотой.
Медиана делит сторону, к которой она проведена, пополам.
Отсюда имеем, что DB=DC.
Так как вся ВС = b, то отрезки DB и DC равны по b/2.
координаты точек
А(0;0;0)
В(2;0;0)
С(0;4;0)
D(3;3;3√2). x=y≠6*cos(60) z=√(36-18)
уравнение плоскости BDC
ax+by+cz-d=0
подставляем координаты точек В D и С
2а-d=0
4b-d=0
3a+3b+3√2c-d=0
положим а=2 , тогда b=1 d=4 c=-5/(3√2)
нормализуем уравнение плоскости.
коэффициент √(4+1+25/18)=√(115/18)= к
2/к*x + 1/k*y - 5/(3√2k)z -4/k=0
расстояние до точки (1;0;0)
подставляем в уравнение
2/к- 4/к = -2/к = -2√18/√115=-6√230/115
расстояние модуль этого числа 6√230/115.
рисунок есть у ранее решившего :)
DC=b/2
Объяснение:
Треугольник ADB - равнобедренный, так как у него две стороны DB и AD равны. Следовательно, угол DAB (угол при основании равнобедренного треугольника) равен второму углу при основании DBA. По условию, так как AD - биссектриса, угол DAB = углу DAC и углу DBA (как только что определили).
Теперь рассмотрим большой треугольник АВС.
В нем угол CBA = Альфа, а угол ВАС = 2*Альфа (так как биссектриса делит угол пополам, и каждая половинка угла равна Альфа, как мы определились).
Зная, что сумма углов треугольника равна 180 градусов, составляем уравнение:
Значит, каждый из углов треугольника равны 60 градусов, а это означает, что треугольник равносторонний. У него все стороны равны. То есть сторона АВ=ВС=АС=b или с (сторона АВ = с, АС=b, так как АВ=АС, то и с=b). В дальшейшем будем считать, что у нас одно число b, раз уж они равны.
В равностороннем треугольнике биссектриса является медианой и высотой.
Медиана делит сторону, к которой она проведена, пополам.
Отсюда имеем, что DB=DC.
Так как вся ВС = b, то отрезки DB и DC равны по b/2.