Равнобедренный ΔАВС (АВ=ВС=60), Р=192 АС=Р-АВ-ВС=192-60-60=72 Найдем длину медианы ВМ, она же является и биссектрисой и высотой: ВМ=√(АВ²-(ВС/2)²)=√(60²-36²)=48 В точке О пересечения медианы треугольника делятся в отношении два к одному, считая от вершины: ВО/ОМ=2/1 ВО=2ВМ/3=32 ОМ=ВМ/3=16 Каждая биссектриса треугольника делится точкой Е пересечения биссектрис в отношении суммы прилежащих сторон к противолежащей, считая от вершины: ВЕ/ЕМ=(АВ+ВС)/АС ВЕ/ЕМ=120/72=5/3 ВЕ=5ВМ/8=30 ЕМ=3ВМ/8=18 Расстояние ОЕ между точками пересечения: ОЕ=ВО-ВЕ=32-30=2 ответ: 2см
АС=Р-АВ-ВС=192-60-60=72
Найдем длину медианы ВМ, она же является и биссектрисой и высотой:
ВМ=√(АВ²-(ВС/2)²)=√(60²-36²)=48
В точке О пересечения медианы треугольника делятся в отношении два к одному, считая от вершины:
ВО/ОМ=2/1
ВО=2ВМ/3=32
ОМ=ВМ/3=16
Каждая биссектриса треугольника делится точкой Е пересечения биссектрис в отношении суммы прилежащих сторон к противолежащей, считая от вершины:
ВЕ/ЕМ=(АВ+ВС)/АС
ВЕ/ЕМ=120/72=5/3
ВЕ=5ВМ/8=30
ЕМ=3ВМ/8=18
Расстояние ОЕ между точками пересечения:
ОЕ=ВО-ВЕ=32-30=2
ответ: 2см
2
Угол А + угол С =156°
угол В=180 - (угол А+ угол С)=180-156=24°
т.к углы при основании равнобедренного треугольника равны, то:
угол А=угол С= 1/2•156=78°
ответ:79;24;78
1
т.к угол АОС=110°
то угол DOC=180- угол АОС=180-110=70°(т.к смежные углы в сумме дают 180°)
угол ВОА=углу DOC=70°(т.к вертикальные)
Рассмотрим треугольник СОD
(угол ОDC=углу ADC)
угол С= 180 - угол DOC- угол ODC=180-70-45=65°
Рассмотрим треугольник ВАО
(угол АВС=АВО)
угол ВАО=180- угол АВО- угол ВОА=180-65-70=45°
т.к угол ВАО=ODC=45°
т.к АВ=CD
т.к угол АВО=C=65°
то треугольники равны по 2 ому признаку