Определи площадь треугольника KBM, если KM = 17 см, ∡K=45°, ∡B=75°. SKBM= см2 (все приблизительные числа в расчётах и ответ округли до десятитысячных).
Дан прямоугольный параллелепипед, в основании которого - квадрат. Нужно найти расстояние от бокового ребра до диагонали параллелепипеда, которая по отношению к боковому ребру - скрещивающаяся.
Определение:
Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.
Иначе - это длина общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.
Проведем плоскость (диагональное сечение) через диагональ параллелепипеда. Она будет параллельна его боковому ребру. т.к. содержит перпендикуляр ОО1, соединяющий центры оснований и параллельный АА1.
Опустим из точки А ребра АА1 перпендикуляр АО на плоскость ВВ1D1D.
АО=А2О2
АО- половина диагонали основания ( квадрата) и является искомым расстоянием между ребром АА1 и диагональю В1Д.
Диагональ квадрата со стороной а равна а√2 (по т.Пифагора или d=a:sin45º)
АО=0,5а√2
Можно с тем же результатом найти расстояние от точки А, являющейся проекцией ребра АА1 на перпендикулярную ей плоскость АВСD, до проекции диагонали В1D на ту же самую плоскость, т.е. найти длину того же отрезка АО.
Дан прямоугольный параллелепипед, в основании которого - квадрат. Нужно найти расстояние от бокового ребра до диагонали параллелепипеда, которая по отношению к боковому ребру - скрещивающаяся.
Определение:
Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.
Иначе - это длина общего перпендикуляра двух скрещивающихся прямых, т.е. отрезка с концами на этих прямых и перпендикулярного каждой из этих прямых.
Проведем плоскость (диагональное сечение) через диагональ параллелепипеда. Она будет параллельна его боковому ребру. т.к. содержит перпендикуляр ОО1, соединяющий центры оснований и параллельный АА1.
Опустим из точки А ребра АА1 перпендикуляр АО на плоскость ВВ1D1D.
АО=А2О2
АО- половина диагонали основания ( квадрата) и является искомым расстоянием между ребром АА1 и диагональю В1Д.
Диагональ квадрата со стороной а равна а√2 (по т.Пифагора или d=a:sin45º)
АО=0,5а√2
Можно с тем же результатом найти расстояние от точки А, являющейся проекцией ребра АА1 на перпендикулярную ей плоскость АВСD, до проекции диагонали В1D на ту же самую плоскость, т.е. найти длину того же отрезка АО.
решение: треугольник АDС. Допустим что треугольник прямоугольный. Докажем это. По теореме Пифагора - с2= а2+b2(где 2 -квадрат числа, с - гипотенуза, a и b катеты) - имеем: 13(2)=12(2)+5(2) проверим: 169=144+25 - верно, следовательно треугольник прямоугольный.
Раз угол BDC 90*, значит и угол BDA тоже 90*, следовательно треугольник ADB прямоугольный. В треугольнике ADB угол D=90*, угол А=45*, дальше по свойству прямоугольного треугольника( сумма острых углов в прямоугольном треугольнике равна 90*) имеем: 90* - уголА= 45* угол Аи угол Вравны( по 45*) следовательно треугольник равнобедренный. По свойству равнобедренного треугольника( против равных углов лежат равные стороны) имеем: AD=DB=12см.
AD=12см, DC = 5 см. AC= AD+DC= 12+5=17. Sabc=(BD*AC):2= 102см(2)
P.S. Надеюсь дала исчерпывающий ответ)))