Трапеция ABCD вписана в окружность (AD II BC), AB=13, BC=7, периметр 50. Найти: 1. CD и AD ; 2.среднюю линию трапеции ; 3. Площадь трапеции ; 4. tg∠BAD ; 5.cos ∠BCD ; 6.AC ; 7.радиус вписанной окружности ; 8.радиус описанной окружности.
Объяснение:
1) Описать окружность можно только около равнобедренной трапеции ⇒ CD=13 , Тогда AD=50-(2*13+7)=17.
2)Средняя линия равна полусумме оснований : .
3) S (трапеции) =1/2*h*(a+b) .Отложим от точки D отрезок DK=BC. Тогда S (трапеции) =S (ΔАВК) , т.к высоты этих фигур равны .
Пусть ВН⊥АD, АН= = 5 . Из ΔАВН , по т. Пифагора
ВН=√(13²-5²)= √( (13+5)(13-5))=√(18*8)=12 .
S (трапеции)=1/2*12*(17+7)=144 (ед²).
4) ΔАВН-прямоугольный, tg∠BAD= , tg∠BAD= , tg∠BAD=2,4 .
5) cos∠BCD= cos∠ABC, тк углы при основании равны.
cos∠ABC=cos(90°+∠АВН) =( по формулам приведения)=- sin∠ABН
Из ΔАВН, sin∠ABН = , sin∠ABН = . Получаем cos∠BCD=- .
6) ΔАВС , по т. косинусов АС²=АВ²+ВС²-2*АВ*ВС*cos∠ABC,
AC²=169+49-2*13*7*( - ) , AC²=218+70 , AC²=288 , AC=12√2.
7) Из формулы S=1/2*P*r , r=(2*S)/P . r= , r =5,76
8) Радиус описанной окружности для трапеции совпадает с радиусом описанной окружности для ΔАВС. Найдем R для ΔАВC по т. синусов
=2R , =2R .
sin∠ABC=sin(90+∠ABH)=( по формулам приведения) =сos∠ABH.
ΔABH , сos∠ABH= , сos∠ABH= .Поэтому sin∠ABC= .
2R = , R=6,5√2 .
Расстояние от концов перпендикуляра к плоскости АВС до катетов
∆ АВС равно длине проведенных перпендикулярно к этим катетам отрезков.
Обозначим перпендикуляр ОК.
Проведем из О отрезки ОМ и ОН перпендикулярно катетам АС и ВС соответственно.
Т.к. угол АСВ=90°, ОМ║ВС, ОН ║АС, и проведенные из середины АВ, они являются средними линиями ∆ АВС.
Отсюда ОМ=ВС/2=6 см
ОН=АС/2=4,5 см.
КМ перпендикулярна АС по т.о 3-х перпендикулярах.
КМ=√(КО²+МО²)=√72=6√2 см
КН перпендикулярна ВС по т.о 3-х перпендикулярах.
КН=√KO²+OH²)=√56,25=7,5 см
Расстояние от О до катетов равно 6 см и 4,5 см, от К до катетов равно 6√2 см и 7,5 см.
Трапеция ABCD вписана в окружность (AD II BC), AB=13, BC=7, периметр 50. Найти: 1. CD и AD ; 2.среднюю линию трапеции ; 3. Площадь трапеции ; 4. tg∠BAD ; 5.cos ∠BCD ; 6.AC ; 7.радиус вписанной окружности ; 8.радиус описанной окружности.
Объяснение:
1) Описать окружность можно только около равнобедренной трапеции ⇒ CD=13 , Тогда AD=50-(2*13+7)=17.
2)Средняя линия равна полусумме оснований : .
3) S (трапеции) =1/2*h*(a+b) .Отложим от точки D отрезок DK=BC. Тогда S (трапеции) =S (ΔАВК) , т.к высоты этих фигур равны .
Пусть ВН⊥АD, АН= = 5 . Из ΔАВН , по т. Пифагора
ВН=√(13²-5²)= √( (13+5)(13-5))=√(18*8)=12 .
S (трапеции)=1/2*12*(17+7)=144 (ед²).
4) ΔАВН-прямоугольный, tg∠BAD= , tg∠BAD= , tg∠BAD=2,4 .
5) cos∠BCD= cos∠ABC, тк углы при основании равны.
cos∠ABC=cos(90°+∠АВН) =( по формулам приведения)=- sin∠ABН
Из ΔАВН, sin∠ABН = , sin∠ABН = . Получаем cos∠BCD=- .
6) ΔАВС , по т. косинусов АС²=АВ²+ВС²-2*АВ*ВС*cos∠ABC,
AC²=169+49-2*13*7*( - ) , AC²=218+70 , AC²=288 , AC=12√2.
7) Из формулы S=1/2*P*r , r=(2*S)/P . r= , r =5,76
8) Радиус описанной окружности для трапеции совпадает с радиусом описанной окружности для ΔАВС. Найдем R для ΔАВC по т. синусов
=2R , =2R .
sin∠ABC=sin(90+∠ABH)=( по формулам приведения) =сos∠ABH.
ΔABH , сos∠ABH= , сos∠ABH= .Поэтому sin∠ABC= .
2R = , R=6,5√2 .
Расстояние от концов перпендикуляра к плоскости АВС до катетов
∆ АВС равно длине проведенных перпендикулярно к этим катетам отрезков.
Обозначим перпендикуляр ОК.
Проведем из О отрезки ОМ и ОН перпендикулярно катетам АС и ВС соответственно.
Т.к. угол АСВ=90°, ОМ║ВС, ОН ║АС, и проведенные из середины АВ, они являются средними линиями ∆ АВС.
Отсюда ОМ=ВС/2=6 см
ОН=АС/2=4,5 см.
КМ перпендикулярна АС по т.о 3-х перпендикулярах.
КМ=√(КО²+МО²)=√72=6√2 см
КН перпендикулярна ВС по т.о 3-х перпендикулярах.
КН=√KO²+OH²)=√56,25=7,5 см
Расстояние от О до катетов равно 6 см и 4,5 см, от К до катетов равно 6√2 см и 7,5 см.