При вращении ромба вокруг стороны получается тело, состоящее из цилиндра, конуса и с такимже конусообразным углублением, поэтому ищем только объем цилиндра 2пRH, где Н -высота целиндра, которая является стороной ромба, находим по т. Пифагора 225+400=625, она 25. радиус цилиндра явл. высотой ромба, проведенной к стороне. Используя туже теорему сос. и реш. ур. 900-(25+х) ^2=625-х^2, (высота лежит вне ромба и х-длина отрезка от ее основания до вершины ромба, х+25 - от основания высоты до др. вершины) получаем 50х=350, х=7 объем =2п*7*25=350п
В треугольнике CDE Е=76°, D=66°, ЕК – биссектриса треугольника. Докажите, что DK < KC.Начертите данный треугольник Угол С равен 38 градусов. Биссектриса ЕК делит СДЕ на два треугольника СКЕ и ЕКД. Треугольник СКЕ оказывается равнобедренным! (т.к. половина угла Е это 38 градусов). Т.е. СК=КЕ. В треугольнике КЕД угол Д равен 66 градусов, ДЕК=38 градусов, ДКЕ=76 градусов. В этом треугольнике большему углу соответствует большая противолежащая сторона. Т.е.КЕ (лежит противугла 66 град) больше , чем КД (лежит против угла 38 град.). А так как СК=КЕ, то СК больше, чем КД. Что и требовалось доказать.
радиус цилиндра явл. высотой ромба, проведенной к стороне. Используя туже теорему сос. и реш. ур.
900-(25+х) ^2=625-х^2, (высота лежит вне ромба и х-длина отрезка от ее основания до вершины ромба, х+25 - от основания высоты до др. вершины)
получаем 50х=350, х=7 объем =2п*7*25=350п
Биссектриса ЕК делит СДЕ на два треугольника СКЕ и ЕКД. Треугольник СКЕ оказывается равнобедренным!
(т.к. половина угла Е это 38 градусов). Т.е. СК=КЕ.
В треугольнике КЕД угол Д равен 66 градусов, ДЕК=38 градусов, ДКЕ=76 градусов. В этом треугольнике большему углу соответствует большая противолежащая сторона. Т.е.КЕ (лежит противугла 66 град) больше , чем КД (лежит против угла 38 град.). А так как СК=КЕ, то СК больше, чем КД.
Что и требовалось доказать.