В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
olaskripcenko87
olaskripcenko87
14.07.2021 08:24 •  Геометрия

Если координаты вершин треугольника АВС равны а(2;3;4) b(2;-1;-4) c(-2;-1;5) найдите среднюю длину вершины ​

Показать ответ
Ответ:
KidFlash1111
KidFlash1111
08.02.2022 01:34

a)    tg∠MHC = 2

б) ∠(AM; (MBC)) = arccos(√10/4)

Объяснение:

a) Пусть Н - середина АВ, тогда СН - медиана и высота равнобедренного треугольника АВС,

СН ⊥ АВ.

СН - проекция МН на плоскость (АВС), значит

МН ⊥ АВ по теореме о трех перпендикулярах.

Тогда ∠МНС - линейный угол двугранного угла МАВС.

Из прямоугольного треугольника АСН:

СН = АС/2 = 2 см, как катет, лежащий против угла в 30°.

ΔМНС:   ∠МСН = 90°,

              tg∠MHC = MC / CH = 4 / 2 = 2

б) ∠ВАС = ∠ВСА = 30° как углы при основании равнобедренного треугольника АВС, ⇒

∠АСВ = 180° - 30° · 2 = 120°

Проведем АК⊥ВС, тогда ∠ АСК = 180° - 120° = 60° (по свойству смежных углов).

ΔАСК:   ∠АКС = 90°

∠САК = 90° - 60° = 30°.

КС = 1/2 АС = 2 см как катет, лежащий против угла в 30°.

ΔСКМ: ∠МСК = 90°, по теореме Пифагора

           МК = √(МС² + СК²) = √(16 + 4) = √20 = 2√5 см

СМ⊥(АВС) по условию, значит

СМ⊥АК,

АК⊥ВС по построению, ⇒ АК ⊥ (МВС), тогда

МК - проекция прямой АМ на плоскость (МВС) и значит

∠АМК = ∠(АМ; (МВС)) - искомый.

ΔАМС прямоугольный равнобедренный, значит его гипотенуза

АМ = СМ√2 = 4√2 см

ΔАМК:   ∠АКМ = 90°

             cos∠AMK = MK / AM = 2√5 / (4√2) = √10/4

∠AMK = arccos(√10/4)


Вравнобедренном треугольнике abc ac=cb=4, bac=30, отрезок см-перпендикуляр к плоскости abc, cm=4см.
0,0(0 оценок)
Ответ:
hoylli333
hoylli333
07.10.2021 16:25

Расстояние от точки до плоскости равно длине перпендикулярного к ней отрезка. 

Обозначим вершины ромба АВСD. 

Точка L удалена от прямых, содержащих стороны ромба, на одинаковое расстояние. ⇒ наклонные, проведенные из L перпендикулярно к сторонам ромба, равны, и по т. о з-х перпендикулярах равны их проекции. 

Эти проекции равны половине диаметра вписанной в ромб окружности, который равен высоте ВН ромба. Центр окружности лежит на пересечении диагоналей ромба. 

ВН=АВ•sin 45°=(a√2)/2=a/√2.

Радиус ОK=а/2√2. 

По т.Пифагора из ∆ LOK  катет LO=√(LK²-OK²) 

LO=√(b²- a²/8) Домножив в подкоренном выражении числитель и знаменатель на 2, получим LO=√[2•(8b²-a²):16]=[√2•(8b²-a²)]:4


Дан ромб со стороной a и углом 45 градусов. точка l удалена от всех прямых, на которых лежат стороны
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота