Даны три вершины а(2;-8;9),в(-1;3;4) с(-4;6;3) параллелограмма АВСД.
Находим середину диагонали АС (это центр параллелограмма - точка О).
О ((2-4)/2= -1; (-8+6)/2= -1; (9+3)/2= 6) = (-1; -1; 6).
Вершину Д находим как симметричную точке В относительно центра.
хД = 2хО - хВ = 2*(-1) - (-1) = -2 + 1 = -1,
yД = 2уО - уВ = 2*(-1) - 3 = -2 - 3 = -5,
zД = 2zО - zВ = 2*6 - 4 = 8.
ответ: Д(-1; -5; 8).
Можно применить другой
У параллелограмма ВА и СД имеют одинаковую разность координат по осям Ох и Оу.
А(2;-8;9), В(-1;3;4), С(-4;6;3).
Для ВА это равно (3; -11; 5).Прибавляем эту разность к координатам точки С:
Д = (-4+ 3 = -1; 6 - 11 = -5, 3 + 5 = 8).
Объяснение:
Соединим А и В, С и D. Четырехугольник ABCD - вписанный, значит <ABC+<ADC=180° и <CDM+<ADC=180°, значит <ABC=<CDM. Аналогично <BAD=<DCM.
Из тр-ка △CMD <CMD(AMB)=180-<CDM-<DCM=180-<ABC-<BAD
<ABC=1/2*(AD+CD); <BAD=1/2(BC+CD).
<AMB=180-1/2*(AD+CD)-1/2*(BC+CD)=180-1/2*(AD+CD+BC)-1/2*CD
Для дуг окружности можно записать:
AD+CD+BC=360-AB - подставим в последнее выражение:
<AMB=180-1/2*(360-АВ)-1/2*СD=180-180+1/2*АВ-1/2*СD=1/2*(AB-CD)=1/2*(ALB-CKD)
Даны три вершины а(2;-8;9),в(-1;3;4) с(-4;6;3) параллелограмма АВСД.
Находим середину диагонали АС (это центр параллелограмма - точка О).
О ((2-4)/2= -1; (-8+6)/2= -1; (9+3)/2= 6) = (-1; -1; 6).
Вершину Д находим как симметричную точке В относительно центра.
хД = 2хО - хВ = 2*(-1) - (-1) = -2 + 1 = -1,
yД = 2уО - уВ = 2*(-1) - 3 = -2 - 3 = -5,
zД = 2zО - zВ = 2*6 - 4 = 8.
ответ: Д(-1; -5; 8).
Можно применить другой
У параллелограмма ВА и СД имеют одинаковую разность координат по осям Ох и Оу.
А(2;-8;9), В(-1;3;4), С(-4;6;3).
Для ВА это равно (3; -11; 5).Прибавляем эту разность к координатам точки С:
Д = (-4+ 3 = -1; 6 - 11 = -5, 3 + 5 = 8).
ответ: Д(-1; -5; 8).
Объяснение:
Соединим А и В, С и D. Четырехугольник ABCD - вписанный, значит <ABC+<ADC=180° и <CDM+<ADC=180°, значит <ABC=<CDM. Аналогично <BAD=<DCM.
Из тр-ка △CMD <CMD(AMB)=180-<CDM-<DCM=180-<ABC-<BAD
<ABC=1/2*(AD+CD); <BAD=1/2(BC+CD).
<AMB=180-1/2*(AD+CD)-1/2*(BC+CD)=180-1/2*(AD+CD+BC)-1/2*CD
Для дуг окружности можно записать:
AD+CD+BC=360-AB - подставим в последнее выражение:
<AMB=180-1/2*(360-АВ)-1/2*СD=180-180+1/2*АВ-1/2*СD=1/2*(AB-CD)=1/2*(ALB-CKD)