1. Многогранник - это геометрическое тело, ограниченное конечным числом плоских многоугольников, любые два смежных из которых не лежат в одной плоскости.
Сами многоугольники называют гранями многогранника, их стороны - ребрами многогранника, а их вершины - вершинами многогранника.
Диагональ многогранника - это отрезок, соединяющий две вершины многогранника, не лежащие в одной грани.
2. Призма - это многогранник, у которого две грани - равные многоугольники с соответственно параллельными сторонами (называют основаниями), а остальные грани - параллелограммы (называют боковыми), у каждого из которых две стороны являются соответственными сторонами оснований.
Прямая призма - это призма, у которой все боковые грани - прямоугольники.
Правильная призма - это прямая призма, у которой в основании лежит правильный многоугольник.
В правильной треугольной пирамиде плоский угол при вершине равен 60 градусов,длина бокового ребра равна 4 см. Найдите объём пирамиды. ------------------ В правильной треугольной пирамиде основанием служит правильный треугольник. Грани пирамиды - равнобедренные треугольники, т.к. боковые ребра равны. По условию плоский угол при вершине равен 60°. Следовательно, углы при основании боковых граней также равны 60°, и эти грани - равносторонние треугольники. Стороны основания равны боковым ребрам и равны 4 см Объем пирамиды равен одной трети произведения площади её основания на высоту. Так как все ребра пирамиды равны, их проекции на основание также равны, и поэтому основание высоты КО пирамиды находится в точке О пересечения высот основания АВС пирамиды. Высоту КО найдем из прямоугольного треугольника АКО, где катеты КО и АО и гипотенуза АК. Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины. АО -2/3 высоты АН ( которая в равностороннем треугольнике является и медианой) АН=АВ*sin(60°)=2√3 см АО=2*(2√3):3=(4√3):3 см КО=√(АК²-АО²)=√(16-48/9)=√(96/9)=(4√6):3 см V=Sh:3 S= (a²√3):4=16√3):4=4√3 см² V=(4√3)*(4√6):3):3=(16√2):3 см³
1. Многогранник - это геометрическое тело, ограниченное конечным числом плоских многоугольников, любые два смежных из которых не лежат в одной плоскости.
Сами многоугольники называют гранями многогранника, их стороны - ребрами многогранника, а их вершины - вершинами многогранника.
Диагональ многогранника - это отрезок, соединяющий две вершины многогранника, не лежащие в одной грани.
Примеры многогранников: пирамида, призма, параллелепипед, октаэдр, додекаэдр, икосаэдр.
2. Призма - это многогранник, у которого две грани - равные многоугольники с соответственно параллельными сторонами (называют основаниями), а остальные грани - параллелограммы (называют боковыми), у каждого из которых две стороны являются соответственными сторонами оснований.
Прямая призма - это призма, у которой все боковые грани - прямоугольники.
Правильная призма - это прямая призма, у которой в основании лежит правильный многоугольник.
------------------
В правильной треугольной пирамиде основанием служит правильный треугольник.
Грани пирамиды - равнобедренные треугольники, т.к. боковые ребра равны.
По условию плоский угол при вершине равен 60°.
Следовательно, углы при основании боковых граней также равны 60°,
и эти грани - равносторонние треугольники.
Стороны основания равны боковым ребрам и равны 4 см
Объем пирамиды равен одной трети произведения площади её основания на высоту.
Так как все ребра пирамиды равны, их проекции на основание также равны, и поэтому основание высоты КО пирамиды находится в точке О пересечения высот основания АВС пирамиды.
Высоту КО найдем из прямоугольного треугольника АКО, где катеты КО и АО и гипотенуза АК.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
АО -2/3 высоты АН ( которая в равностороннем треугольнике является и медианой)
АН=АВ*sin(60°)=2√3 см
АО=2*(2√3):3=(4√3):3 см
КО=√(АК²-АО²)=√(16-48/9)=√(96/9)=(4√6):3 см
V=Sh:3
S= (a²√3):4=16√3):4=4√3 см²
V=(4√3)*(4√6):3):3=(16√2):3 см³