Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
Проведѐм анализ этой задачи.
Предположим, что задача решена — нарисуем
окружность с центром O и правильный треугольник
ABC, вписанный в неѐ.
Если провести радиусы в вершины этого треугольника,
то можно увидеть на рисунке три равных между собой
треугольника: OAB, OBC, OCA.
Треугольники эти равны по трѐм сторонам (две
стороны в каждом таком треугольнике – это радиусы
данной окружности, а третья сторона каждого из
них — это сторона правильного треугольника ABC).
Но тогда равны углы при вершине O в каждом из них.
А так как полный угол равен 3600
, то величина каждого из углов при вершине O в этих
треугольниках равна 1200
. Это наблюдение приводит к мысли о том, как решить
предложенную задачу.
1
1. Провести окружность.
2. Провести из центра окружности отрезок к точке
на окружности, то есть радиус окружности.
3. Повернуть его относительно центра окружности
на 120 градусов по часовой стрелке.
4. Повернуть его относительно центра окружности
на 120 градусов против часовой стрелки.
5. Соединить отрезками полученные на
окружности точки – концы трѐх радиусов.
Треугольник, сторонами которого являются построенные три отрезка, будет
правильным.
Доказательство
Пусть O — центр окружности, OA — первоначально построенный радиус, B и
C — полученные при таком построении точки. Отрезки OA, OB, OC равны как
радиусы одной окружности. Треугольники OAB, OBC, OCA равны по первому
признаку равенства треугольников. Отсюда следует, что отрезки AB, BC, CA равны
между собой, а потому треугольник ABC — правильный.
2
1. Провести окружность. Обозначить ее центр O.
2. Провести прямую через точку O, найти точки
пересечения прямой и окружности, обозначить
их A и B.
3. Повернуть прямую AB относительно точки B на
30°, найти точку пересечения полученной
прямой и окружности, обозначить ее C.
4. Повернуть прямую AB относительно точки B на
30° в другую сторону от диаметра AB, найти
точку пересечения полученной прямой и
окружности, обозначить ее D.
5. Построить отрезок CD.
6. Соединить отрезками полученные на окружности точки.
Доказательство
Проведѐм радиус OC. OC = OB как радиусы
окружности, следовательно треугольник OBC -
равнобедренный, поэтому угол OCB равен 30°.
Проведѐм радиус OD. OD = OB как радиусы
окружности, следовательно треугольник OBD -
равнобедренный, поэтому угол ODB равен 30°.
Получаем, что треугольники OBC и OBD равны (по стороне и двум углам), откуда
следует, что BС = BD . В равнобедренном треугольнике CBD угол CBD равен 60°.
Согласно одному из признаков равностороннего треугольника, треугольник CBD
является равносторонним.
Рассказ учителя
2 также может предшествовать анализ. Он
может быть проведѐн следующим образом. При
анализе, предшествующем первому построению, был
использован радиус исходной окружности. Можно
исходить из диаметра окружности.
Пусть равносторонний треугольник ABC вписан в
окружность с центром O. Проведѐм диаметр BD этой
окружности.