Пусть в четырехугольнике ABCD диагонали AC и BD пересекаются. Известно, что через любые две пересекающиеся прямые можно провести единственную плоскость. Значит, прямые АС и BD лежат в некоторой плоскости а. Значит, все точки этих прямых лежат в а, то есть, точки А,В,С,D лежат в а. Раз все вершины четырехугольника лежат в одной плоскости, значит, он плоский, что и требовалось.