Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
Дано:
ABC- прямокутний трикутник
СВ= 7 см
Кут В= 60°
Знайте: АС, АВ
Розв'язання
sin кута В= АС/СВ
АС= sin 60°* CB= 0,8660*7= приблизно 6 см
cos кута В= АВ/СВ
АВ= cos 60°* CB= 0,5*7=3,5 см
Відповідь: АС= 6 см, АВ= 3,5 см
180-90-60= 30° - Кут С
АВ=1/2 СВ (тому що напроти АВ є кут 30°, а за властивістю прямокутного трикутника, катет що лежить напроти кута 30° буде дорівнювати 1/2 гіпотенузи)
АВ= 1/2 СВ= 7:2= 3,5
Із трикутника АВС за теоремою Піфагора:
АС²= СВ²- АВ²= 7²- 3,5²= 49- 12,25= 36,75
АС= √36,75= приблизно 6 см
Відповідь: та же що і у першому варіанті
Уточнение:
Я не могу точно быть уверена в ответе, но эту задачу я делала по принципу, по которому мы решаем в классе
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.