1. В треугольнике АВС высота СD делит угол С на два угла, причем ∠АСD = 10°, ∠ВСD = 70°.
а) Докажите, что треугольник АВС — равнобедренный, и укажите его боковые стороны.
б) Отрезок СК — биссектриса данного треугольника. Найдите углы, которые она образует со стороной АВ.
Если не трудно, то можно ещё с рисунком. Заранее
Проведем высоту CH
В треугольнике BCH катет CH лежит против угла в 30 градусов, след-но, равен половине гипотенузы.
CH=12/2=6
ТОгда площадь равна 12*6=72
2. Т.к. треугольник равнобедренный, высота является медианой и делит сторону на два отрезка по 8/2=4 см
Тогда высота по теореме Пифагора
Площадь треугольника
3.
Т.к. треугольник равнобедренный - высота также является медианой, т.е. делит основание на 2 отрезка по 10/2=5 см
По теореме Пифагора боковая сторона равна
Высота, проведённая в равнобедренном треугольнике к основанию, является и медианой и биссектрисой
ВН = НС = 1/2 × ВС = 1/2 × 24 = 12 см
Рассмотрим ∆ ВАН (угол ВНА = 90°):
По теореме Пифагора:
АВ² = ВН² + АН²
АН² = 13² - 12²
АН² = 169 - 144 = 25
Значит, АН = 5 см – высота равнобедренного треугольника
Площадь треугольника вычисляется по формуле:
где а – основание треугольника, h – высота, проведённая к этому основанию
S abc = 1/2 × BC × AH = 1/2 × 24 × 5 = 12 × 5 = 60 см²
ОТВЕТ: АН = 5 см ; S abc = 60 см²