1) ΔАВС равнобедренный ⇒ высота АН⊥ВС явл. медианой ⇒ ВН=СН=3 По теореме о трёх перпендикулярах ДН⊥ВС ⇒ расстояние от точки Д до ВС = ДН. ΔАВН: АН=√(25-9)=4 ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора) АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2 по теореме о трёх перпенд. НО⊥АС ⇒ искомое расстояние от т. Н до т. О (до АС)= НО. ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2 Середина АВ - точка Е, АЕ=ВЕ=2. Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17
высота АН⊥ВС явл. медианой ⇒ ВН=СН=3
По теореме о трёх перпендикулярах ДН⊥ВС ⇒
расстояние от точки Д до ВС = ДН.
ΔАВН: АН=√(25-9)=4
ΔАДН: ДН=√(АД²+АН²)=√(100+16)=√116=2√29
2) АВСД - квадрат, ВН⊥ пл. АВСД
АВ=4 ⇒ АС=ВД=4√2 (по теор. Пифагора)
АС⊥ВД, точка О - точка пересечения диагоналей ⇒ ВО=2√2
по теореме о трёх перпенд. НО⊥АС ⇒
искомое расстояние от т. Н до т. О (до АС)= НО.
ΔНВО: НО=√(ВН²+ВО²)=√(64+8)=√72=6√2
Середина АВ - точка Е, АЕ=ВЕ=2.
Расстояние от т. Н до т. Е =√(ВЕ²+ВН²)=√(4+64)=√68=2√17
11. Так как углы MSP и NSK равны, и оба угла содержат общую часть угол KSP=90 градусов, то равны и углы MSK и NSP
Сумма углов MSK, KSP и NSP равна 180°
Значит, сумма углов MSK и NSP равна 180-90=90°
Каждый из этих углов равен 90/2=45°
Искомый угол MSP состоит из углов MSK и KSP, Значит, равен 90+45=135°
12. Углы AMN и BMN равны между собой, так как каждый из них состоит из двух попарно равных углов.
Так как углы AMN и ВMN являются смежными и в сумме составляют развернутый угол, равный 180°, то каждый из них равен 180/2=90°
ответ: 135°; 90°, 90°