а) 17,18,19,23,27,31,37 в ряду 7 членов. Центральное место принадлежит медиане. Его находим так: Если число нечетное(как в нашем случае) то добавляем 1 и делим пополам. 7+1=8 8/2=4. Значит на 4 месте в ряду находится медиана. При этом проверить ,чтобы числа стоЯли строго по возрастанию! На 4 месте стоит 23! значит Ме=23.
б)
1,8 2,4 5,6 8,7 9,8 10,2
поиск медианы при четном числе членов делается иначе. Число членов +1 делят на 2.
7/2=3,5
поскольку место натуральное число,медиана находится между 3 и 4 местом. Среднее арифметическое двух мест.
5,6+8,7=14,3 14,3/2=7,15 Ме = 7,15
и не важно,что такого члена нет в этом ряду.Ровно половина над медианой и половина под ней.
Т.к. в условии сказано, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков, то все девочки подарили разное количество валентинок. Причём одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза, тогда:
Первая девочка подарила 1 валентинку, вторая девочка подарила 2 валентинки, третья 3 валентинки...
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 - валентинок было подарено, соответственно, мальчиков, которые получили валентинки было 120, а девочек, которые их дарили 15
Если бы мы взяли
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136 - это уже получилось бы, что 136 мальчиков получили валентинки и 16 девочек их дарили, а всего детей в школе 139
Объяснение:
а) 17,18,19,23,27,31,37 в ряду 7 членов. Центральное место принадлежит медиане. Его находим так: Если число нечетное(как в нашем случае) то добавляем 1 и делим пополам. 7+1=8 8/2=4. Значит на 4 месте в ряду находится медиана. При этом проверить ,чтобы числа стоЯли строго по возрастанию! На 4 месте стоит 23! значит Ме=23.
б)
1,8 2,4 5,6 8,7 9,8 10,2
поиск медианы при четном числе членов делается иначе. Число членов +1 делят на 2.
7/2=3,5
поскольку место натуральное число,медиана находится между 3 и 4 местом. Среднее арифметическое двух мест.
5,6+8,7=14,3 14,3/2=7,15 Ме = 7,15
и не важно,что такого члена нет в этом ряду.Ровно половина над медианой и половина под ней.
ответ: 15 девочек.
Объяснение:
Т.к. в условии сказано, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков, то все девочки подарили разное количество валентинок. Причём одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза, тогда:
Первая девочка подарила 1 валентинку, вторая девочка подарила 2 валентинки, третья 3 валентинки...
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 - валентинок было подарено, соответственно, мальчиков, которые получили валентинки было 120, а девочек, которые их дарили 15
Если бы мы взяли
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136 - это уже получилось бы, что 136 мальчиков получили валентинки и 16 девочек их дарили, а всего детей в школе 139
136 + 16 > 139 неверно