Теорія: Функція = при ≠π2+π,∈ℤ є непарною і періодичною з періодом π. Тому досить побудувати її графік на проміжку [0;π2) Оберемо для побудови контрольні точки, через які проведемо плавну криву на координатної площині. 0=0π6=3‾‾√3π4=1π3=3‾√
Потім, відобразивши її симетрично відносно початку координат, отримаємо графік на інтервалі (−π2;π2) Використовуючи періодичність, будуємо графік функції = на всій області визначення. Графік функції = називають тангенсоїдою. Головною гілкою графіка функції = називають гілку, яка знаходиться в інтервалі (−π2;π2) tgxgrafik.png Властивості функції = 1. Область визначення - множина всіх дійсних чисел ≠π2+π,∈ℤ
2. Множина значень - множина ℝ всіх дійсних чисел
3. Функція = періодична з періодом π
4. Функція = непарна
5. Функція = приймає: - значення 0, при =π,∈ℤ; - додатні значення на інтервалах (π;π2+π),∈ℤ; - від'ємні значення на інтервалах (−π2+π;π),∈ℤ.
6. Функція = зростає на інтервалах (−π2+π;π2+π),∈ℤ.
Функція = при ≠π2+π,∈ℤ є непарною і періодичною з періодом π.
Тому досить побудувати її графік на проміжку [0;π2)
Оберемо для побудови контрольні точки, через які проведемо плавну криву на координатної площині.
0=0π6=3‾‾√3π4=1π3=3‾√
Потім, відобразивши її симетрично відносно початку координат, отримаємо графік на інтервалі (−π2;π2)
Використовуючи періодичність, будуємо графік функції = на всій області визначення.
Графік функції = називають тангенсоїдою.
Головною гілкою графіка функції = називають гілку, яка знаходиться в інтервалі (−π2;π2)
tgxgrafik.png
Властивості функції =
1. Область визначення - множина всіх дійсних чисел ≠π2+π,∈ℤ
2. Множина значень - множина ℝ всіх дійсних чисел
3. Функція = періодична з періодом π
4. Функція = непарна
5. Функція = приймає:
- значення 0, при =π,∈ℤ;
- додатні значення на інтервалах (π;π2+π),∈ℤ;
- від'ємні значення на інтервалах (−π2+π;π),∈ℤ.
6. Функція = зростає на інтервалах (−π2+π;π2+π),∈ℤ.
a) Выражение имеет смысл когда подкоренное выражение неотрицательно. Тогда
-x ≥ 0 ⇔ x ≤ 0 ⇔ x∈(-∞; 0].
b) В силу пункта а) область определения функции : D(y)=(-∞; 0].
Значение квадратного корня неотрицательно, поэтому множество значений функции : E(y)=[0; +∞).
Чтобы построить график функции определим несколько значений функции:
График функции в приложенном рисунке 1.
c) Чтобы показать на графике значения х при у=2 и y=2,5 сначала определим эти значения. Для этого решаем уравнения:
Получили целое число.
Приближенные значение х=–6,25≈–6.