a) х^2 + xy - x - ax + a - a = x^2+ xy - x - ax = x( x + y ) - x( 1 + a )
b) x^2 - 3x -x + 3 +3x -5 = x^2 - x - 2
d = 1 + 4*2 = 9
x_1 = (1 - 9) / 2 = -2 / 2 = -1
x_2 = (1 + 3) / 2 = 4 / 2 = 2
ОДЗ:
{x^2>0; x e R, но х не равен нулю
{6x+27>0; 6x>-27; x>-4,5
x e (-4,5; 0) U (0; + беск.)
x^2<6x+27
x^2-6x-27<0
x^2-6x-27=0
D=(-6)^2-4*1*(-27)=144
x1=(6-12)/2=-3; x2=(6+12)/2=9
+(-3)-(9)+
x e (-3; 9)
С учетом ОДЗ: x e (-3;0)U(0;9)
ответ: -2
2) log7(log3(log3(x)))<=0
ОДЗ:
log3(log3(x))>0
log3(log3(x))> log3(1)
log3(x)>1
log3(x)>log3(3)
x>3
log7(log3(log3(x))) <=log7(1)
log3(log3(x))<=1
log3(log3(x))<=log3(3)
log3(x)<=3
log3(x)<=log3(27)
x<=27
С учетом ОДЗ: x e (3; 27]
Неравенству удовлетворяют 24 значений.
a) х^2 + xy - x - ax + a - a = x^2+ xy - x - ax = x( x + y ) - x( 1 + a )
b) x^2 - 3x -x + 3 +3x -5 = x^2 - x - 2
d = 1 + 4*2 = 9
x_1 = (1 - 9) / 2 = -2 / 2 = -1
x_2 = (1 + 3) / 2 = 4 / 2 = 2