а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
2
n(n−1)
Для того, чтобы найти точки пересечения прямых у = 3 - х и у = 2х, нужно приравнять правые части и решить уравнение относительно переменной х.
Следовательно получим:
3 - х = 2х (перенесем переменную х из левой части в правую, поменяв знак на противоположный);
3 = 2х + х;
3 = х * (2 + 1);
3 = х * 3 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
х = 3 : 3;
х = 1.
Тогда у = 3 - 1 = 2.
Следовательно точка пересечения прямых у = 3 - х и у = 2х имеет координаты: (1; 2).
ответ: (1; 2).
Объяснение: