В каждой клетке шахматной доски размера 24×24 записано число, равное количеству клеток, в которые может попасть шахматный конь, если бы он стоял на данной клетке. Чему равна сумма чисел, написанных на доске?
Объяснение: 1. Заметим, что из угловых клеток шахматный конь может прыгнуть ровно в 2 различные клетки, следовательно, в угловых клетках записано число 2. Таким образом, вклад от угловых клеток равен 2⋅4=8.
2. Заметим, что в соседних с угловыми клетках, расположенных на краю доски, записано число 3. Следовательно, вклад от таких клеток в общую сумму даст 3⋅8=24.
3. Для остальных клеток, расположенных на краю доски (которых ровно 4⋅(24−4)=80 штук) существует ровно передвинуть шахматного коня на новую клетку, а значит, в этих клетках записано число 4. Кроме того, в клетках, соседних по диагонали с угловыми, также записано число 4. Отсюда вклад тех клеток, в которых записано число 4, равен 4⋅80+4⋅4=336.
4. Для остальных клеток, которые расположены во втором столбце в начале и в конце доски, а также во второй строчке вверху и внизу доски, записано число 6. Таких клеток ровно 80 штук, и вклад от них равен 80⋅6=480.
5. Из остальных клеток, очевидно, шахматный конь может перейти в новые и это максимально возможное число Поскольку оставшихся клеток ровно (24−4)2=400 штук, то сумма чисел, записанных в этих клетках, составляет 8⋅400=3200.
6. Суммируя значения, записанные в клетках доски, получим
ответ:4048
Объяснение: 1. Заметим, что из угловых клеток шахматный конь может прыгнуть ровно в 2 различные клетки, следовательно, в угловых клетках записано число 2. Таким образом, вклад от угловых клеток равен 2⋅4=8.
2. Заметим, что в соседних с угловыми клетках, расположенных на краю доски, записано число 3. Следовательно, вклад от таких клеток в общую сумму даст 3⋅8=24.
3. Для остальных клеток, расположенных на краю доски (которых ровно 4⋅(24−4)=80 штук) существует ровно передвинуть шахматного коня на новую клетку, а значит, в этих клетках записано число 4. Кроме того, в клетках, соседних по диагонали с угловыми, также записано число 4. Отсюда вклад тех клеток, в которых записано число 4, равен 4⋅80+4⋅4=336.
4. Для остальных клеток, которые расположены во втором столбце в начале и в конце доски, а также во второй строчке вверху и внизу доски, записано число 6. Таких клеток ровно 80 штук, и вклад от них равен 80⋅6=480.
5. Из остальных клеток, очевидно, шахматный конь может перейти в новые и это максимально возможное число Поскольку оставшихся клеток ровно (24−4)2=400 штук, то сумма чисел, записанных в этих клетках, составляет 8⋅400=3200.
6. Суммируя значения, записанные в клетках доски, получим
8+24+336+480+3200=4048.