При a = -2 уравнение всегда равно нулю, то есть верно. Поэтому при а = -2 имеется бесконечное количество решений.
2) Делаем тоже, что и в первом:
y = (3-ax)/2
8x+ a(3-ax)/2 = a+2
8x + (3a - a^2 * x)/2 = a+2 | * 2
16x + 3a - a^2 * x = 2a + 4
-a^2 * x + a + 16x - 4 = 0
x(16 - a^2) + (a-4) = 0
x(4-a)(4+a) - (4-a) = 0
(4-a)(x(4+a) - 1) = 0
(4-a)(4x + ax - 1) = 0 (1)
Для того, чтобы а давало одно решение системе, необходимо, во-первых, чтобы а не было равно 4(тогда повторится история первого примера, будет бесконечно корней), а во-вторых, при любом а, отличном от четырёх и от минус четырёх, у уравнения (1) всегда будет один корень, потому что а - это простое число, (4-а) - тоже, а 4х + ах - 1 превращается в обычное линейное уравнение, которое имеет только один корень. В случае, когда а = -4, то уравнение превращается вот во что: (4+4)(4х - 4х - 1) = 0
8*(-1) = 0 , что неверно.
Значит, значение параметра может быть любым числом, кроме 4 и -4. =)
1) Выразим y из первого уравнения:
y = 1 - ax
Подставим y во второе уравнение:
4x - 2(1 - ax) = a
4x - 2 + 2ax = a
2(2x-1) + a(2x-1) = 0
(a+2)(2x-1) = 0
При a = -2 уравнение всегда равно нулю, то есть верно. Поэтому при а = -2 имеется бесконечное количество решений.
2) Делаем тоже, что и в первом:
y = (3-ax)/2
8x+ a(3-ax)/2 = a+2
8x + (3a - a^2 * x)/2 = a+2 | * 2
16x + 3a - a^2 * x = 2a + 4
-a^2 * x + a + 16x - 4 = 0
x(16 - a^2) + (a-4) = 0
x(4-a)(4+a) - (4-a) = 0
(4-a)(x(4+a) - 1) = 0
(4-a)(4x + ax - 1) = 0 (1)
Для того, чтобы а давало одно решение системе, необходимо, во-первых, чтобы а не было равно 4(тогда повторится история первого примера, будет бесконечно корней), а во-вторых, при любом а, отличном от четырёх и от минус четырёх, у уравнения (1) всегда будет один корень, потому что а - это простое число, (4-а) - тоже, а 4х + ах - 1 превращается в обычное линейное уравнение, которое имеет только один корень. В случае, когда а = -4, то уравнение превращается вот во что: (4+4)(4х - 4х - 1) = 0
8*(-1) = 0 , что неверно.
Значит, значение параметра может быть любым числом, кроме 4 и -4. =)
Выражение: 2/2-x-0.5=4/x*(2-x)
ответ: 4.5-x-8/x=0
Решаем по действиям:
1) 2/2=1
2.0|2_ _
2_ |1
0
2) 1-0.5=0.5
-1.0
_0_._5_
0.5
3) 4*(2-x)=8-4*x
4*(2-x)=4*2-4*x
3.1) 4*2=8
X4
_2_
8
4) (8-4*x)/x=8/x-4*x/x
5) x/x=1
6) 0.5-x-(8/x-4)=0.5-x-8/x+4
7) 0.5+4=4.5
+0.5
_4_._0_
4.5
Решаем по шагам:
1) 1-x-0.5-4/x*(2-x)=0
1.1) 2/2=1
2.0|2_ _
2_ |1
0
2) 0.5-x-4/x*(2-x)=0
2.1) 1-0.5=0.5
-1.0
_0_._5_
0.5
3) 0.5-x-(8-4*x)/x=0
3.1) 4*(2-x)=8-4*x
4*(2-x)=4*2-4*x
3.1.1) 4*2=8
X4
_2_
8
4) 0.5-x-(8/x-4*x/x)=0
4.1) (8-4*x)/x=8/x-4*x/x
5) 0.5-x-(8/x-4)=0
5.1) x/x=1
6) 0.5-x-8/x+4=0
6.1) 0.5-x-(8/x-4)=0.5-x-8/x+4
7) 4.5-x-8/x=0
7.1) 0.5+4=4.5
+0.5
_4_._0_
4.5