Объяснение:
Александр упаковал 400 больших коробок и израсходовал два рулона скотча полностью, а от третьего осталось ровно две пятых,то есть:
2+(1-(2/5))=2+(3/5)=2³/₅ (рулона).
65 см=0,65 м 55 см=0,55 м.
Найдём количество метров в одном рулоне:
Количество метров в трёх рулонах скотча: 100*3=300. ⇒
Если на каждую коробку нужно по 0, 55 м скотча, то на 560 одинаковых коробок ему нужно:
560*0,55=308 (м) ⇒
ответ: трёх целых таких рулонов скотча ему не хватит.
первая сторона a= 5см
вторая сторона b= 10см
периметр P= 30 см
площадь прямоугольника:
S=ab
если одну( меньшую) сторону примем за x, то другая сторона будет (х+5), следовательно:
x×(x+5)=150 (перемножаем почленно)
x²+5x=150 ( переносим 150 в левую часть уравнения)
x²+5x-150=0 (решаем уравнение через дискриминант или теорему Виета)
D=b²-4ac=25-4×1×(-150)=25+600=625 (625>0, значит уравнение имеет два действительных корня)
x1,2=(-b±√625)/2a
x1=(-5+25)/2×1
x1=20÷2
x1=10
x2=(-5-25)/2
х2=-15 ( не удовлетворяет условиям задачи, так как длина стороны не может быть отрицательной)
следовательно x=10
значит меньшая сторона прямоугольника равна 5см, а большая сторона Равна 5+5=10см.
таким образом периметр прямоугольника ( сумма всех сторон) равен 2×(10+5)= 10+10+5+5=30см
Объяснение:
Александр упаковал 400 больших коробок и израсходовал два рулона скотча полностью, а от третьего осталось ровно две пятых,то есть:
2+(1-(2/5))=2+(3/5)=2³/₅ (рулона).
65 см=0,65 м 55 см=0,55 м.
Найдём количество метров в одном рулоне:
Количество метров в трёх рулонах скотча: 100*3=300. ⇒
Если на каждую коробку нужно по 0, 55 м скотча, то на 560 одинаковых коробок ему нужно:
560*0,55=308 (м) ⇒
ответ: трёх целых таких рулонов скотча ему не хватит.
первая сторона a= 5см
вторая сторона b= 10см
периметр P= 30 см
Объяснение:
площадь прямоугольника:
S=ab
если одну( меньшую) сторону примем за x, то другая сторона будет (х+5), следовательно:
x×(x+5)=150 (перемножаем почленно)
x²+5x=150 ( переносим 150 в левую часть уравнения)
x²+5x-150=0 (решаем уравнение через дискриминант или теорему Виета)
D=b²-4ac=25-4×1×(-150)=25+600=625 (625>0, значит уравнение имеет два действительных корня)
x1,2=(-b±√625)/2a
x1=(-5+25)/2×1
x1=20÷2
x1=10
x2=(-5-25)/2
х2=-15 ( не удовлетворяет условиям задачи, так как длина стороны не может быть отрицательной)
следовательно x=10
значит меньшая сторона прямоугольника равна 5см, а большая сторона Равна 5+5=10см.
таким образом периметр прямоугольника ( сумма всех сторон) равен 2×(10+5)= 10+10+5+5=30см