Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Для решения можно использовать один из известных Нахождение корней квадратного трехчлена по формуле.1. Найти значение дискриминанта по формуле D =b2-4*a*c.2. В зависимости от значения дискриминанта вычислить корни по формулам:Если D > 0, то квадратный трехчлен имеет два корня. x = -b±√D / 2*a Если D < 0, то квадратный трехчлен имеет один корень. x= -b / 2*aЕсли дискриминант отрицателен, то квадратный трехчлен не имеет корней Нахождение корней квадратного трехчлена выделением полного квадрата. Рассмотрим на примере приведенного квадратного трехчлена. Приведенное квадратное уравнение, уравнение у которого на старший коэффициент равен единице.Найдем корни квадратного трехчлена x2+2*x-3. Для этого решим следующее квадратное уравнение: x2+2*x-3=0; Преобразуем это уравнение:x2+2*x=3;В левой части уравнения стоит многочлен x2+2*x, для того чтобы представить его в виде квадрата суммы нам необходимо чтобы там был еще один коэффицент равный 1. Добавим и вычтем из этого выражения 1, получим:(x2+2*x+1) -1=3То, что в скобках можно представить в виде квадрата двучлена(x+1)2 -1=3;(x+1)2 = 4;Данное уравнение распадается на два случая либо x+1=2 , либо х+1=-2.В первом случае получаем ответ х=1, а во втором, х=-3.ответ: х=1, х=-3.В результате преобразований нам необходимо получить в левой части квадрат двучлена, а в правой части некоторое число. В правой части не должна содержаться переменная.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так