810. Чтобы привести дроби к общему знаменателю нужно и верхнуюю и нижнюю часть умножить на такое число, чтрбы нижняя часть двух дробей стала одинакова. а) 1/4 и 1/6. Произведение заменателей- 6*4=24. чтобы был знаменатель 24 нужно умножить верх и низ первой дроби на 6 (так как надо получить 24, а 4 надо умножить на 6, чтобы получить 24), а вторую- на 4. получаем: 6/24 и 4/24 Теперь к наимееьшему общему знаменателю. это такое число, которое сравняет знаменатели, но оно должно быть самое маленькое их возможных (то есть чтобы и 6 делилось на это число и 4, но оно должно быть самое первое из возможных), а это число 12. получаем: 2/12 и 3/12 по аналогии остальное: в)6*8=48 8/48 и 6/48 наименьший знаменатель- 24 4/24 и 3/24 д) 15*10=150 20/150 и 45/150 наименьший знаменатель- 30 4/30 и 9/30
811. а)наименьший знаменатель- 4. первую дробь оставляем, вторую умножаем на 2 5/4 и 6/4 б)наименьший знаменатель 30 5/30 и 9/30 ж) знаменатель- 30 15/30 и 4/30
По действиям. 1) 20 мин. = ²⁰/₆₀ ч. = ¹/₃ ч. 30 * ¹/₃ = ³⁰/₃ = 10 (км) успел проехать II велосипедист за время остановки I велосипедиста , т.е. 20 минут. 2) 20 + 30 = 50 (км/ч) скорость сближения велосипедистов 3) (210 - 10) : 50 = 200 : 50 = 4(ч.) время, через которое велосипедисты встретились 4) 4 * 30 + 10 = 120 + 10 = 130 (км) расстояние от города, из которого выехал II велосипедист, до места встречи.
Уравнение. Пусть расстояние, которое проехал II велосипедист, до места встречи равно х км , а расстояние которое проехал I велосипедист (210-х) км. Время в пути до момента встречи II велосипедиста (х/30) часов , а I велосипедиста (210 - х)/20 часов. Зная, что разница во времени 20 минут = ¹/₃ часа , составим уравнение: х/30 - (210 - х)/20 = ¹/₃ | * 60 2x - 3(210 - x) = 20 2x - 3*210 - 3 * (-x) = 20 2x - 630 + 3x = 20 5x - 630 = 20 5x = 20 +630 5x= 650 x= 650: 5 x = 130 (км)
ответ: 130 км расстояние от города , из которого выехал второй велосипедист, до места встречи.
а) 1/4 и 1/6. Произведение заменателей- 6*4=24. чтобы был знаменатель 24 нужно умножить верх и низ первой дроби на 6 (так как надо получить 24, а 4 надо умножить на 6, чтобы получить 24), а вторую- на 4.
получаем: 6/24 и 4/24
Теперь к наимееьшему общему знаменателю. это такое число, которое сравняет знаменатели, но оно должно быть самое маленькое их возможных (то есть чтобы и 6 делилось на это число и 4, но оно должно быть самое первое из возможных), а это число 12. получаем: 2/12 и 3/12
по аналогии остальное:
в)6*8=48
8/48 и 6/48
наименьший знаменатель- 24
4/24 и 3/24
д) 15*10=150
20/150 и 45/150
наименьший знаменатель- 30
4/30 и 9/30
811.
а)наименьший знаменатель- 4. первую дробь оставляем, вторую умножаем на 2
5/4 и 6/4
б)наименьший знаменатель 30
5/30 и 9/30
ж) знаменатель- 30
15/30 и 4/30
1) 20 мин. = ²⁰/₆₀ ч. = ¹/₃ ч.
30 * ¹/₃ = ³⁰/₃ = 10 (км) успел проехать II велосипедист за время остановки I велосипедиста , т.е. 20 минут.
2) 20 + 30 = 50 (км/ч) скорость сближения велосипедистов
3) (210 - 10) : 50 = 200 : 50 = 4(ч.) время, через которое велосипедисты встретились
4) 4 * 30 + 10 = 120 + 10 = 130 (км) расстояние от города, из которого выехал II велосипедист, до места встречи.
Уравнение.
Пусть расстояние, которое проехал II велосипедист, до места встречи равно х км , а расстояние которое проехал I велосипедист (210-х) км.
Время в пути до момента встречи II велосипедиста (х/30) часов , а
I велосипедиста (210 - х)/20 часов.
Зная, что разница во времени 20 минут = ¹/₃ часа , составим уравнение:
х/30 - (210 - х)/20 = ¹/₃ | * 60
2x - 3(210 - x) = 20
2x - 3*210 - 3 * (-x) = 20
2x - 630 + 3x = 20
5x - 630 = 20
5x = 20 +630
5x= 650
x= 650: 5
x = 130 (км)
ответ: 130 км расстояние от города , из которого выехал второй велосипедист, до места встречи.