Две линейные функции вида y = kx + b могут, или быть параллельными друг другу, или пересекаться в одной точке.
Графиком линейной функции является прямая линия. Коэффициент k является угловым коэффициентом или, углом наклона прямой к положительному направлению оси 0Х.
Если k>0, то угол будет острым, т.е. прямая наклонена вправо от оси 0У.
При k < 0 прямая будет иметь тупой угол с осью 0Х, т.е. наклонена влево от оси 0У.
Если у двух линейных функций коэффициэнты k равны одному и тому же числу, то эти прямые параллельны относительно друг друга.
1) у=2х-10 и у=2х+9 - k=2 и k=2, 2=2, значит графики этих функций параллельны.
Коэффициент b определяет длину отрезка который пересекает прямая по оси 0У от начала координат (0;0) - точку, в которой график пересекает ось 0У.
Взаимное расположение прямых у=2х-10 и у=2х+9 можно посмотреть во вложении.
2) у=-3х+9 и у=-3х+9
k=-3; b=9 k=-3; b=9 => -3=-3; 9=9 если коэффициенты k и b обеих функций одинаковые, то графики таких функций совпадают. По сути, это один и тот же график.
3) у=-5х-6 и у=-5х; -5=-5 - графики параллельны.
4) у=1.5+4х и у=-4х+3
Нужно переписать 1-е уравнение в принятом виде y = kx + b:
у=4х+1.5 и у=-4х+3, 4 ≠ -4, значит прямые пересекаются.
5) у=7+2.3х и у=3.2х-1
у=2.3х+7 и у=3.2х-1; 2.3≠2.3, значит прямые пересекаются.
Объяснение:
Задача 1.
a1 = an - (n-1)*d = 59 - 3*n + 3 = 62 -3*n
Sn = (a1 + an)*(n/2) = 603
(62 - 3*n + 59)*n = 2*603 = 1206
(121 - 3*n)*n = 1206
- 3*n² + 121*n - 1206 = 0 a*x² + b*x + c = 0
Вычисляем дискриминант - D.
D = b² - 4*a*c = 121² - 4*(-3)*(-1206) = 169 - дискриминант. √D = 13.
Вычисляем корни уравнения.
n = (-b+√D)/(2*a) = (-121+13)/(2*-3) = -108/-6 = 18 - первый корень
x₂ = (-b-√D)/(2*a) = (-121-13)/(2*-3) = -134/-6 = 22,33 - второй корень -нет
n = 18 - число членов - ответ.
а1 = an - (n-1)*d = 59 - 17*3 = 59 - 51 = 8 - а1 -первый член- ответ
Проверено - правильно.
Задача 2.
a1 = an - (n-1)*d = -8 + 5*n -5 = -13 +5*n
Sn = (-13 + 5*n - 8)*n = 30*2 = 60
5*n² - 11*n - 60 = 0 - НЕ РЕШЕНО.
ЗАДАЧА 3.
а1 = an - (n-1)*d = 49 - (n-1)*2 = 51 - 2*n
Sn = (a1 + an)*(n/2) = 702
(51 - 2*n + 49)*n = 702*2
- 2*n² + 100*n - 1404 = 0 - не решено.
Задача 4.
а1 = an - (n-1)*d = -18 + 7*n -7 = 7*n - 25
Sn = (a1 + an)*(n/2) =
(7*n - 25 -18)*n = -20*2 = -40
7*n² - 43*n + 40 = 0
D = b² - 4*a*c = -43² - 4*(7)*(40) = 729 - дискриминант. √D = 27.
Вычисляем корни уравнения.
n₁ = (-b+√D)/(2*a) = (43+27)/(2*7) = 70/14 = 5 - первый корень
x₂ = (-b-√D)/(2*a) = (43-27)/(2*7) = 16/14 = 1,14 - второй корень - нет
n = 5 - число членов - ответ
а1 = -18 - 4*(-7) = -18 + 28 = 10 - первый член
Проверено - правильно.
Две линейные функции вида y = kx + b могут, или быть параллельными друг другу, или пересекаться в одной точке.
Графиком линейной функции является прямая линия. Коэффициент k является угловым коэффициентом или, углом наклона прямой к положительному направлению оси 0Х.
Если k>0, то угол будет острым, т.е. прямая наклонена вправо от оси 0У.
При k < 0 прямая будет иметь тупой угол с осью 0Х, т.е. наклонена влево от оси 0У.
Если у двух линейных функций коэффициэнты k равны одному и тому же числу, то эти прямые параллельны относительно друг друга.
1) у=2х-10 и у=2х+9 - k=2 и k=2, 2=2, значит графики этих функций параллельны.
Коэффициент b определяет длину отрезка который пересекает прямая по оси 0У от начала координат (0;0) - точку, в которой график пересекает ось 0У.
Взаимное расположение прямых у=2х-10 и у=2х+9 можно посмотреть во вложении.
2) у=-3х+9 и у=-3х+9
k=-3; b=9 k=-3; b=9 => -3=-3; 9=9 если коэффициенты k и b обеих функций одинаковые, то графики таких функций совпадают. По сути, это один и тот же график.
3) у=-5х-6 и у=-5х; -5=-5 - графики параллельны.
4) у=1.5+4х и у=-4х+3
Нужно переписать 1-е уравнение в принятом виде y = kx + b:
у=4х+1.5 и у=-4х+3, 4 ≠ -4, значит прямые пересекаются.
5) у=7+2.3х и у=3.2х-1
у=2.3х+7 и у=3.2х-1; 2.3≠2.3, значит прямые пересекаются.
6) у=10х и у=1-10х
у=10х и у=-10х+1; 10≠-10 - графики пересекаются