Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
A) Находим делители числа 30. Это числа (со знаком плюс-минус) 1, 2, 3, 5, 6, 10, 12, 15, 30. Ищем среди них хотя бы одно, которое является корнем уравнения х^3 - 4x^2 - 11x +30 = 0. Находим, что корнем уравнения является число 2. Значит многочлен х^3 - 4x^2 - 11x +30 должен делиться на многочлен х-2. Делим х^3 - 4x^2 - 11x +30 на х-2 в столбик и получаем разложение на множители: х^3 - 4x^2 - 11x +30 = (x-2)(x^2-2x-15) Решаем уравнение (x-2)(x^2-2x-15) = 0 x-2 = 0 ⇒x = 2 x^2-2x-15=0 ⇒x = 5; x = -3
б) По аналогичной схеме, предварительно вынести х за скобки и получить уравнение x(x^3 - 13x -12) = 0 Рассматриваем скобку-уравнение х^3 - 13x -12 = 0 Ищем делители числа 12 и среди них находим корень этого кубического уравнения х = -1. Делим многочлен х^3 - 13x -12 на х+1. Получаем разложение: х^3 - 13x -12 = (x+1)(x^2-x-12). В итоге, начальное уравнение раскладывается на множители: х(x+1)(x^2-x-12) = 0 Находим четыре корня: х = 0; х = -1; х = 3; х = -4
в) Схема та же. Найти делители числа 6 и среди них корень уравнения. Это число -2. Делим x^3 - 2x^2 - 5x + 6 на х+2. Получаем разложение: (х+2)(x^2-4x+3)=0 Корни уравнения: х = -2; х = 3; х = 1
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Ищем среди них хотя бы одно, которое является корнем уравнения х^3 - 4x^2 - 11x +30 = 0.
Находим, что корнем уравнения является число 2. Значит многочлен х^3 - 4x^2 - 11x +30 должен делиться на многочлен х-2.
Делим х^3 - 4x^2 - 11x +30 на х-2 в столбик и получаем разложение на множители:
х^3 - 4x^2 - 11x +30 = (x-2)(x^2-2x-15)
Решаем уравнение (x-2)(x^2-2x-15) = 0
x-2 = 0 ⇒x = 2
x^2-2x-15=0 ⇒x = 5; x = -3
б) По аналогичной схеме, предварительно вынести х за скобки и получить уравнение
x(x^3 - 13x -12) = 0
Рассматриваем скобку-уравнение х^3 - 13x -12 = 0
Ищем делители числа 12 и среди них находим корень этого кубического уравнения х = -1.
Делим многочлен х^3 - 13x -12 на х+1. Получаем разложение:
х^3 - 13x -12 = (x+1)(x^2-x-12). В итоге, начальное уравнение раскладывается на множители:
х(x+1)(x^2-x-12) = 0
Находим четыре корня: х = 0; х = -1; х = 3; х = -4
в) Схема та же. Найти делители числа 6 и среди них корень уравнения. Это число -2.
Делим x^3 - 2x^2 - 5x + 6 на х+2. Получаем разложение:
(х+2)(x^2-4x+3)=0
Корни уравнения: х = -2; х = 3; х = 1