С графика функции укажите: а) значение функции которым соответствуют значения аргумента 1; -1; 3; -1,5; 4; -3,5 б) значение аргумента которым соответствуют значения функции 1; -3; -4,5
Искать будем так - найдем частные производные функции, приравняем их к нулю и составим систему, найдем решение этой системы - стационарную точку, далее составим гессиан и по нему определим характер этой точки: если гессиан положительно определен, то стационарная точка есть точка минимума функции (локального или глобального), а если гессиан отрицательно определён, то стационарная точка есть точка максимума функции (локального или глобального). Так вот, если эта точка оказалась минимумом, то просто подставим ее в функцию, найдем ее значение и это будет ответ.
Гессиан состоит из констант, не зависящих от аргументов, поэтому данная функция имеет один глобальный экстремум. А так как гессиан положительно определен (оба главных минора матрицы положительные - 2 и 2*2-0*0=4), то полученная стационарная точка есть точка глобального минимума.
Гессиан состоит из констант, не зависящих от аргументов, поэтому данная функция имеет один глобальный экстремум. А так как гессиан положительно определен (оба главных минора матрицы положительные - 2 и 2*2-0*0=4), то полученная стационарная точка есть точка глобального минимума.
'
ответ - наименьшее значение функции = 6