Осталось доказать, что при любом целом k число k (k - 1)(2k - 1) делится на 6. 1) Числа k, k - 1 - разной чётности, поэтому одно из них делится на 2, а значит, и всё произведение делится на 2. 2) Докажем делимость на 3. Пусть ни k, ни k - 1 не делятся на 3 (иначе утверждение заведомо верно). Тогда k представимо в виде k = 3m + 2, m - целое. Подставим такое k в выражение 2k - 1. 2k - 1 = 2(3m + 2) - 1 = 6m + 3 = 3(2m + 1) То, что стоит в скобках, - целое число, поэтому 2k - 1 делится на 3.
Для завершения доказательства отметим, что если число делится на 2 и на 3, то оно делится и на 6.
Мне сказали, что я неверно понял вопрос, георгин должно быть 7.
Варианты:
1) 8 роз из 10 + 7 георгин из 8.
C(8, 10)*C(7, 8) = C(2, 10)*8 = 10*9/2*8 = 360
2) 9 роз из 10 + 7 георгин из 8.
C(9, 10)*C(7, 8) = 10*8 = 80
3) 10 роз из 10 + 7 георгин из 8.
C(10, 10)*C(7, 8) = 1*8 = 8
Всего 360+80+8 = 448 вариантов.
Если георгин все-таки может быть 8, тогда добавляются варианты:
4) 8 роз из 10 + 8 георгин из 8.
C(8, 10)*C(8, 8) = C(2, 10)*1 = 10*9/2*1 = 45
5) 9 роз из 10 + 8 георгин из 8.
C(9, 10)*C(8, 8) = 10*1 = 10
6) 10 роз из 10 + 8 георгин из 8.
C(10, 10)*C(8, 8) = 1*1 = 1
Всего: 448 + 45 + 10 + 1 = 504 варианта.
n/12 + n^2/8 + n^3/24 = k/6 + k^2/2 + k^3/3 = k/6 * (1 + 3k + 2k^2) = k/6 * (k - 1)(2k - 1) = k (k - 1)(2k - 1) / 6
Осталось доказать, что при любом целом k число k (k - 1)(2k - 1) делится на 6.
1) Числа k, k - 1 - разной чётности, поэтому одно из них делится на 2, а значит, и всё произведение делится на 2.
2) Докажем делимость на 3. Пусть ни k, ни k - 1 не делятся на 3 (иначе утверждение заведомо верно). Тогда k представимо в виде k = 3m + 2, m - целое. Подставим такое k в выражение 2k - 1.
2k - 1 = 2(3m + 2) - 1 = 6m + 3 = 3(2m + 1)
То, что стоит в скобках, - целое число, поэтому 2k - 1 делится на 3.
Для завершения доказательства отметим, что если число делится на 2 и на 3, то оно делится и на 6.