Решим неравенство методом интервалов: Нули функции будут в точках: 4; 1,5; 2/3 (просто приравнять уравнения в скобках к нулю) Отмечаем нули функции на координатной прямой в порядке их возрастания. Все точки выколоты, т.к. неравенство строгое. Для того чтобы узнать как расположить знаки под интервалами выбираем произвольное число кроме тех, которые являются нулями функции. Возьмем, например, 0. Если х = 0, то 3*0-2= -2 (знак отрицательный) 0-4= -4 (знак отрицательный) 3-2*0 = 3 (знак положительный) Перемножаем все числа (-2)(-4)*3 = 24 (знак положительный) => под интервалом будет "+". Нуль находится в пределах от минус бесконечности до 2/3. Ставим там "+". Далее знаки чередуются. Теперь нам нужен ответ. Т.к. у нас < следовательно нам нужно все что меньше нуля, тобишь под знаком "-". Выписываем интервалы и получаем конечный ответ.
Решение: x^3 +x-2=0 Это уравнение разложим на множители. Для этого в левой части уравнения отнимем х^2 и прибавим х^2 а также -2 представим как (-1-1) x^3 -x^2 +x^2 -1+x-1=0 (x^3 -x^2)+(x^2-1) + (x-1)=0 x^2(x-1) +[(x-1)(x+1)] +1*(x-1)=0 (x-1)(x^2 +x+1+1)=0 (x-1)(x^2+x+2)=0 (x-1)=0 x-1=0 x=1 (x^2+x+2)=0 x^2+x+2=0 x1,2=(-1+-D)/2*1 D=√(1-4*1*2)=√(1-8)=√-7 - дискриминант отрицательный: из отрицательного числа квадратный корень не извлекается , в данном случае уравнение не имеет корней
ответ: Уравнение имеет единственный корень-это целое число х=1
Нули функции будут в точках: 4; 1,5; 2/3 (просто приравнять уравнения в скобках к нулю)
Отмечаем нули функции на координатной прямой в порядке их возрастания. Все точки выколоты, т.к. неравенство строгое. Для того чтобы узнать как расположить знаки под интервалами выбираем произвольное число кроме тех, которые являются нулями функции.
Возьмем, например, 0.
Если х = 0, то
3*0-2= -2 (знак отрицательный)
0-4= -4 (знак отрицательный)
3-2*0 = 3 (знак положительный)
Перемножаем все числа (-2)(-4)*3 = 24 (знак положительный) => под интервалом будет "+".
Нуль находится в пределах от минус бесконечности до 2/3. Ставим там "+". Далее знаки чередуются.
Теперь нам нужен ответ. Т.к. у нас < следовательно нам нужно все что меньше нуля, тобишь под знаком "-". Выписываем интервалы и получаем конечный ответ.
x^3 +x-2=0
Это уравнение разложим на множители.
Для этого в левой части уравнения отнимем х^2 и прибавим х^2 а также -2 представим как (-1-1)
x^3 -x^2 +x^2 -1+x-1=0
(x^3 -x^2)+(x^2-1) + (x-1)=0
x^2(x-1) +[(x-1)(x+1)] +1*(x-1)=0
(x-1)(x^2 +x+1+1)=0
(x-1)(x^2+x+2)=0
(x-1)=0
x-1=0
x=1
(x^2+x+2)=0
x^2+x+2=0
x1,2=(-1+-D)/2*1
D=√(1-4*1*2)=√(1-8)=√-7 - дискриминант отрицательный: из отрицательного числа квадратный корень не извлекается , в данном случае уравнение не имеет корней
ответ: Уравнение имеет единственный корень-это целое число х=1