1) значение функции, если значение аргумента равно 2;
2) значение аргумента, при котором значение функции равно -5.
y = 3x – 2
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у -5 -2 1
1)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=2
у=3*2-2=4 у=4 при х=2
2)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
x = πk/4 - π/48
x = 3π/4 + πk
Объяснение:
cos3x - sin5x = √3 (cos5x + sin3x)
cos3x - sin5x = √3 cos5x + √3 sin3x
cos3x - √3 sin3x = sin5x + √3 cos5x
2*(1/2cos3x - √3/2 sin3x ) = 2*(1/2sin5x + √3/2 cos5x)
1/2cos3x - √3/2 sin3x = 1/2sin5x + √3/2 cos5x
sin(30° - 3x) = sin(5x + 60°)
sin(30° - 3x) - sin(5x + 60°) = 0
2sin( ((30° - 3x) - (5x + 60°))/2)*cos(((30° - 3x)+ (5x + 60°))/2) = 0
2sin(-4x-15°)cos(-x + 45°) = 0
-2sin(4x + π/12)cos(x - π/4) = 0
1) sin(4x + π/12) = 0
4x + π/12 = πk
4x = πk - π/12
x = πk/4 - π/48
2) cos(x - π/4) = 0
x - π/4 = π/2 + πk
x = π/2 + πk + π/4
x = 3π/4 + πk
Объяснение:
Постройте график функции y = 3x – 2.
Пользуясь графиком, найдите:
1) значение функции, если значение аргумента равно 2;
2) значение аргумента, при котором значение функции равно -5.
y = 3x – 2
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у -5 -2 1
1)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=2
у=3*2-2=4 у=4 при х=2
2)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у= -5
-5=3х-2
-3х= -2+5
-3х=3
х= -1 у= -5 при х== -1