В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
zac00
zac00
28.01.2022 23:22 •  Алгебра

Приведите определение прямоугольного треугольника и перечислите его свойства. Приведите формулы высоты, проведённой к гипотенузе прямоугольного треугольника​

Показать ответ
Ответ:
jumarova7946
jumarova7946
18.04.2023 16:34

Истоки алгебры уходят к временам глубокой древности. Арифметические действия над натуральными числами и дробями — простейшие алгебраические операции — встречаются в ранних математических текстах[3]. Ещё в 1650 году до н. э. египетские писцы могли решать отвлечённые уравнения первой степени и простейшие уравнения второй степени, к ним относятся задачи 26 и 33 из папируса Ринда и задача 6 из Московского папируса (так называемые задачи на «аха»). Предполагается, что решение задач было основано на правиле ложного положения[9]. Это же правило, правда, крайне редко, использовали вавилоняне[10].

Вавилонские математики умели решать квадратные уравнения. Они имели дело только с положительными коэффициентами и корнями уравнения, так как не знали отрицательных чисел. По разным реконструкциям в Вавилоне знали либо правило для квадрата суммы, либо правило для произведения суммы и разности, вместе с тем метод вычисления корня полностью соответствует современной формуле. Встречаются и уравнения третьей степени[11]. Кроме того, в Вавилоне была введена особая терминология, использовались шумерские клинописные знаки для обозначения первого неизвестного («длины»), второго неизвестного («ширины»), третьего неизвестного («глубины»), а также различных производных величин («поля» как произведения «длины» и «ширины», «объёма» как произведения «длины», «ширины» и «глубины»), которые можно считать математическими символами, так как в обычной речи уже использовался аккадский язык. Несмотря на явное геометрическое происхождение задач и терминов, использовались они отвлечённо, в частности, «площадь» и «длина» считались однородными[10]. Для решения квадратных уравнений было необходимо уметь осуществлять различные тождественные алгебраические преобразования, оперировать неизвестными величинами. Таким образом был выделен целый класс задач, для решения которых необходимо пользоваться алгебраическими приёмами[11].

После того как была открыта несоизмеримость стороны и диагонали квадрата, греческая математика переживала кризис, разрешению которого выбор геометрии как основы математики и определение алгебраических операций для геометрических величин. Геометрической алгебре посвящена вторая книга «Начал» Евклида, работы Архимеда и Аполлония. С использованием отрезков, прямоугольников и параллелепипедов были определены сложение и вычитание, произведение (построенный на двух отрезках прямоугольник). Такое представление позволило доказать дистрибутивный закон умножения относительно сложения, тождество для квадрата суммы. Алгебра первоначально была основана на планиметрии и при в первую очередь для решения квадратных уравнений[12]. Вместе с тем к алгебраическим уравнениям сводятся сформулированные пифагорейцами задачи об удвоении куба и трисекции угла, построение правильных многоугольников[13]. Решение кубических уравнений получило своё развитие в работах Архимеда (сочинения «О шаре и цилиндре» и «О коноидах и сфероидах»), который исследовал в общем виде уравнение {\displaystyle x^{3}+ax+b=0}x^{3}+ax+b=0. Отдельные задачи решались с конических сечений[14].

Неожиданный переход к алгебре, основанной на арифметике, произошёл в работах Диофанта, который ввёл буквенные обозначения: неизвестное число он назвал «число», вторую степень неизвестного — «квадрат», третью — «куб», четвёртую — «квадрато-квадрат», пятую — «квадрато-куб», шестую — «кубо-куб». Также он ввёл обозначения для отрицательных степеней, свободного члена, отрицательного числа (или вычитания) и знака равенства. Диофант знал и использовал правило переноса вычитаемого из одной части уравнения в другую и правило сокращения равных членов[15]. Исследуя уравнения третьей и четвёртой степеней, Диофант для нахождения рациональной точки на кривой использует такие методы геометрической алгебры, как провести касательную в рациональной точке кривой или провести прямую через две рациональные точки. В X веке «Арифметика» Диофанта, в которой он изложил свои методы, была переведена на арабский язык, а в XVI веке достигла Западной Европы, оказав влияние на работы Ферма и Виета. Идеи Диофанта можно заметить также в работах Эйлера, Якоби, Пуанкаре и других математиков вплоть до начала XX века. В настоящее время проблемы Диофанта принято относить к алгебраической геометрии[16].

0,0(0 оценок)
Ответ:
harwq
harwq
20.05.2020 17:44
1) Производная функции f(x)=4x-sinx+1 равна f'(x) = 4 - cos(x).
Значения функции и производной в заданной точке Хо = 0 равны:
f(0) = 4*0 - 0 + 1 = 1
f'(x) = 4 - 1 = 3
Тогда уравнение касательной:
Укас = 1 + 3*(Х - 0) = 3Х + 1.

2) Производная функции f(x) = (1 - x) / (x^2 + 8) равна:
f'(x) =  (x^2 - 2x - 8) / (x^2 + 8)^2.
Так как в знаменателе квадрат, то отрицательной производная может быть при отрицательном числителе.
Для этого находим критические точки:
x^2 - 2x - 8 = 0
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-2)^2-4*1*(-8)=4-4*(-8)=4-(-4*8)=4-(-32)=4+32=36;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√36-(-2))/(2*1)=(6-(-2))/2=(6+2)/2=8/2=4;
x_2=(-√36-(-2))/(2*1)=(-6-(-2))/2=(-6+2)/2=-4/2=-2.
Поэтому ответ: f'(x) < 0 при -2 <x < 4.
Решить 1) записать уравнение касатальной к графику функции f(x)=4x-sinx+1 в точке x0=0 2) найти знач
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота