Составьте предложение, выполнив предварительно ряд действий (слова предложения записываются по мере выполнения задания).
1.Из предложения Мы любили встречать рассвет на речке взять дополнение.
2.Добавить сказуемое из предложения Дождь застал нас врасплох.
3.Существительное, стоящее в именительном падеже в предложении Туристы с трудом преодолели подъем, употребить в родительном падеже множественного числа.
4.Из предложения На нашем пути лежало бревно взять обстоятельство места, выраженное существительным с предлогом.
5.Из предложения Над рекой расстилался туман взять существительное, выступающее в роли обстоятельства места, употребить в дательном падеже единственного числа с предлогом К.
Известно, что квадрат всегда положителен, если речь идёт о вещественных числах. Поэтому вещественных решений нет.
Однако, есть ещё такая штука как комплексные числа, которые допускают отрицательность квадрата (там есть число ). Таким образом, имеем, извлекая корень:
На самом деле, это восемь различных комплексных чисел, лежат они на окружности, равноудалённо друг от друга. Записать их можно как
ответ: вещественных решений нет, комплексные написаны строчкой выше.
Составьте предложение, выполнив предварительно ряд действий (слова предложения записываются по мере выполнения задания).
1.Из предложения Мы любили встречать рассвет на речке взять дополнение.
2.Добавить сказуемое из предложения Дождь застал нас врасплох.
3.Существительное, стоящее в именительном падеже в предложении Туристы с трудом преодолели подъем, употребить в родительном падеже множественного числа.
4.Из предложения На нашем пути лежало бревно взять обстоятельство места, выраженное существительным с предлогом.
5.Из предложения Над рекой расстилался туман взять существительное, выступающее в роли обстоятельства места, употребить в дательном падеже единственного числа с предлогом К.
Объяснение:
Запишем это ещё нагляднее:
Известно, что квадрат всегда положителен, если речь идёт о вещественных числах. Поэтому вещественных решений нет.
Однако, есть ещё такая штука как комплексные числа, которые допускают отрицательность квадрата (там есть число ). Таким образом, имеем, извлекая корень:
На самом деле, это восемь различных комплексных чисел, лежат они на окружности, равноудалённо друг от друга. Записать их можно как
ответ: вещественных решений нет, комплексные написаны строчкой выше.