Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
а) 5х2 = 9х + 2; б) -х2 = 5x - 14;
в) 6х + 9 = х2; г) z - 5 = z2 - 25;
д) у2 = 520 - 576; е) 15у2 - 30 = 22y + 7;
ж) 25р2 = 10p - 1; з) 299х2 + 100x = 500 - 101х2. ответ:а) 5х2 = 9х + 2; 5х2 - 9х - 2 = 0; D = 81 + 4 • 5 • 2 = 81 + 40= 121; х = (9±11)/10; х1 = -0,2; х2 = 2;
б) -х2 = 5x - 14; х2 + 5х - 14 = 0; D = 25 + 4 • 14 = 81; х = (-5±9)/2; х1 = -7; х2 = 2;
в) 6х + 9 = х2; х2 - 6х - 9 = 0; D = 36 + 4 • 9 = 36 + 36 = 72; х = (6±√72)/2; = 3 ± 3√2;
г) z - 5 = z2 - 25; z2 - z - 20 = 0; D = 1 + 80 = 81; х = (1±9)/2;; х1 = -4; х2 = 5;
д) у2 = 520 - 576; у2 - 52у + 576 = 0; D1 = 262 - 576 = 676 - 576 = 100; х = (26±10)/1; х1 = 16; х2 = 36;
е) 15у2 - 30 = 22y + 7; 15у2 -22у - 37 = 0; D = 112 + 37 • 15 = 676; х = (11±26)/15; х1 = -1; х2 = 37/15 = 2 7/15;
ж) 25р2 = 10p - 1; 25р2 - 10р + 1; D1 = 25 - 25 = 0; p = 5/25 = 1/5;
з) 299х2 + 100x = 500 - 101х2; 400х2 + 100х - 500 = 0; 4х2 + х - 5 = 0; D = 1 + 4 • 4 • 5 = 81; х = (-1±9)/8; х1 = -1 1/4; х2 = 1.
угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀)
1) найдем производную:
y'(x)=(x²+4)'=2x
k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1
2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е.
y'(x₀)=k
2*x₀=4
x₀=2
чтобы найти ординату точки, подставим x₀ в функцию y(x):
y₀=y(x₀)=2²+4=4+4=8
(2;4) - координаты точки, в которой угловой коэффициент касания равен k=4
3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀)
x₀=1, y'(x₀)=2 - найдено выше под 1)
y(x₀)=1²+4=5
подставляем найденные значения в общий вид:
f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1