Объяснение:
Члены геометрической прогрессии в₁, в₁q , в₁q².
Сумма в₁ +в₁q +в₁q² =65.
Члены арифметической прогрессии (в₁-1), в₁q , (в₁q²-19) , по свойству ар.прогрессии в₁q =0,5(в₁-1+в₁q²-19)
2в₁q =в₁-1+в₁q²-19,
в₁+в₁q²-20-2в₁q =0
в₁-2в₁q+в₁q² =20
Получили систему
в₁ +в₁q +в₁q² =65, в₁(1 +q +q² )=65.
в₁ -2в₁q+в₁q² =20 в₁(1 -2q+q² )=20 Разделим первое на второе и используем основное свойство пропорции
65(1 -2q+q² )=20(1 +q +q² )
65-130q+65q²=20+20q+20q²
45q²-150q+45=0
3q²-10q+3=0 ,Д=100-36=64 ,q₁=1/3 , q₂=3
Найдем в₁,
1)в₁(1 +q +q² )=65, в₁(1 +1/3 +1/9 )=65, в₁=45
2) в₁(1 +q +q² )=65., в₁(1 +3 +9 )=65, в₁=5
Тогда эти числа такие
1) 45, 45*1/3 , 45*(1/9) или 45,15,5.
2) 5 ,5*3 ,5*9 или 5,15,45.
Примерно 20,6 м
Объяснение
х - старая длина поля
у - старая ширина поля
Согласно условию задачи составляем первое уравнение системы (по теореме Пифагора) :
х² + у² = 10 000 (сумма квадратов катетов = квадрату гипотенузы)
х - 62 - новая длина поля
у - 50 - новая ширина поля
2х + 2у - старый периметр поля
2(х - 62) + 2(у - 50) новый периметр поля
Согласно условию задачи, новый периметр меньше старого в 5 раз, составляем второе уравнение системы:
2(х - 62) + 2(у - 50) = (2х + 2у) / 5
Умножим обе части уравнения на 5, чтобы избавиться от дробного выражения, получим:
5(2х -224 + 2у) = 2х + 2у
10х + 10у -2х -2у = 1120
8х + 8у = 1120, сократим на 8:
х + у = 140, выразим х через у:
х = 140 -у и подставим значение х в первое уравнение:
(140 - у)² + у² = 10000, раскрываем скобки, квадрат разности:
19600 - 280у + у² + у² = 10000
2у² -280у + 9600 = 0, сократим на 2:
у² - 140у + 4800 = 0
Получили квадратное уравнение, ищем корни:
у первое, второе = (140 плюс минус √19600-19200) / 2
у первое, второе = (140 плюс минус √400) / 2
у первое, второе = (140 плюс минус 20) / 2
у первое = 60 (ширина), тогда х первое( длина) = 140 - 60 = 80
у второе = 90 (ширина), тогда х первое( длина) = 140 - 90 = 50
Вторую пару х и у отбрасываем, т.к длина не может быть меньше ширины.
Итак, новая длина поля 80 - 62 = 18 (м)
новая ширина поля 60 - 50 = 10 (м)
Ищем диагональ нового поля: √18² + 10² = √424 ≅ 20,6
Проверка
Старый периметр: 2*80 + 2*60 = 280 (м)
Новый периметр: 2*18 + 2*10 = 56 (м)
280 : 56 = 5 (раз), соответствует условию задачи.
Объяснение:
Члены геометрической прогрессии в₁, в₁q , в₁q².
Сумма в₁ +в₁q +в₁q² =65.
Члены арифметической прогрессии (в₁-1), в₁q , (в₁q²-19) , по свойству ар.прогрессии в₁q =0,5(в₁-1+в₁q²-19)
2в₁q =в₁-1+в₁q²-19,
в₁+в₁q²-20-2в₁q =0
в₁-2в₁q+в₁q² =20
Получили систему
в₁ +в₁q +в₁q² =65, в₁(1 +q +q² )=65.
в₁ -2в₁q+в₁q² =20 в₁(1 -2q+q² )=20 Разделим первое на второе и используем основное свойство пропорции
65(1 -2q+q² )=20(1 +q +q² )
65-130q+65q²=20+20q+20q²
45q²-150q+45=0
3q²-10q+3=0 ,Д=100-36=64 ,q₁=1/3 , q₂=3
Найдем в₁,
1)в₁(1 +q +q² )=65, в₁(1 +1/3 +1/9 )=65, в₁=45
2) в₁(1 +q +q² )=65., в₁(1 +3 +9 )=65, в₁=5
Тогда эти числа такие
1) 45, 45*1/3 , 45*(1/9) или 45,15,5.
2) 5 ,5*3 ,5*9 или 5,15,45.
Примерно 20,6 м
Объяснение
х - старая длина поля
у - старая ширина поля
Согласно условию задачи составляем первое уравнение системы (по теореме Пифагора) :
х² + у² = 10 000 (сумма квадратов катетов = квадрату гипотенузы)
х - 62 - новая длина поля
у - 50 - новая ширина поля
2х + 2у - старый периметр поля
2(х - 62) + 2(у - 50) новый периметр поля
Согласно условию задачи, новый периметр меньше старого в 5 раз, составляем второе уравнение системы:
2(х - 62) + 2(у - 50) = (2х + 2у) / 5
Умножим обе части уравнения на 5, чтобы избавиться от дробного выражения, получим:
5(2х -224 + 2у) = 2х + 2у
10х + 10у -2х -2у = 1120
8х + 8у = 1120, сократим на 8:
х + у = 140, выразим х через у:
х = 140 -у и подставим значение х в первое уравнение:
(140 - у)² + у² = 10000, раскрываем скобки, квадрат разности:
19600 - 280у + у² + у² = 10000
2у² -280у + 9600 = 0, сократим на 2:
у² - 140у + 4800 = 0
Получили квадратное уравнение, ищем корни:
у первое, второе = (140 плюс минус √19600-19200) / 2
у первое, второе = (140 плюс минус √400) / 2
у первое, второе = (140 плюс минус 20) / 2
у первое = 60 (ширина), тогда х первое( длина) = 140 - 60 = 80
у второе = 90 (ширина), тогда х первое( длина) = 140 - 90 = 50
Вторую пару х и у отбрасываем, т.к длина не может быть меньше ширины.
Итак, новая длина поля 80 - 62 = 18 (м)
новая ширина поля 60 - 50 = 10 (м)
Ищем диагональ нового поля: √18² + 10² = √424 ≅ 20,6
Проверка
Старый периметр: 2*80 + 2*60 = 280 (м)
Новый периметр: 2*18 + 2*10 = 56 (м)
280 : 56 = 5 (раз), соответствует условию задачи.