В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
gwetyalina1345
gwetyalina1345
14.02.2022 04:41 •  Алгебра

Найдите три последовательных чётных натуральных числа если квадрат второго из них на 56 меньше удвоенного произведения первого и третьего чисел. решите с объяснением, .

Показать ответ
Ответ:
Nastya1112172
Nastya1112172
08.10.2020 01:28
Последовательные четные числа отличаются друг от друга на 2, поэтому:

Пусть среднее из этих трех чисел будет   х , тогда первое будет х - 2, а последнее  х + 2. Тогда квадрат второго запишем как  х², а удвоенное произведение первого и третьего - как 2(х - 2)(х + 2). Учитывая, что  х² на 56 меньше, чем 2(х - 2)(х + 2), составим уравнение и решим его:
2(x - 2)(x + 2)- x^{2} =56 \\ 


Применяем формулу разности квадратов:
2( x^{2} -4)- x^{2} -56=0 \\ 
2x^{2} -8- x^{2} -56=0 \\ 
 x^{2} -64=0 \\ 
(x-8)(x+8)=0 \\ 
x_1 =8; x_2=-8\\

Второй корень не подходит по условию (нам нужны только натуральные числа), значит, х = 8; тогда три задуманных числа - это 6, 8 и 10.

Проверка:
8² + 56 = 2*6*10
64 + 56 = 120
120 = 120

ответ: искомые числа - это  6, 8, 10.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота