2) √35 чуть меньше чем 6. Подумай, почему. √120 - почти 11. В порядке возрастания (если нужно будет в обратном, поменяешь местами): 2, 3, √35, 6.5, √120, 13.
3) Трапеция прямоугольная, значит одна боковая сторона тоже образует прямые углы с основаниями, как у квадрата. Эта сторона будет меньше, так как расположена под прямым углом, следовательно равна 9. Большая - 15. Отсекаем прямоугольник, проводя высоту с другой стороны трапеции, остаётся треугольник со сторонами 9, 15 и одной неизвестной, которую находим по теореме Пифагора: 15^2 = x^2 + 9^2 15^2 - 9^2 = x^2 x^2 = 225 - 81 = 144; x = √144
Пусть сторона квадрата равна . Тогда по условию, Теперь попробуем найти стороны треугольника PQD:
1) найти PD:
По теореме Пифагора
2) найти PQ и QD:
Проведем прямую проходящую через точку Q и параллельную BC, и отметим точки пересечения с квадратом ABCD как M и N где M∈AB, N∈CD и прямую проходящую через точку Q и параллельную AB, пересекающую квадрат в точках E и F где E∈BC, F∈AD.
Тогда из параллельности PQ||BC, FQ||CD и свойства пропорциональных отрезков получаем,
Следовательно из ,
Также из-за того, что AP<AM,
Заметим что, AMQF - прямоугольник, тогда
Теперь нам известны катеты прямоугольных треугольников PMQ и QFD, значит мы можем найти и их гипотенузы PQ и QD,
3) доказать что ∠PQD=90°:
Действительно,
Из обратной теоремы Пифагора следует что, ∠PQD - прямой угол.
4) доказать что ∠PQD - наибольший угол соответствующего треугольника:
Предположим обратное, допустим в треугольнике PQD есть угол больший 90°, но тогда сумма углов этого треугольника будет больше 180° - противоречие.
По итогу имеем то что, ∠PQD=90° - наибольший угол треугольника PQD.
1) 800 * 5% = 800 * 0.05 = 40 - скидка
800 - 40 = 760 - цена чайника
1000 - 760 = 240 - сдача.
2) √35 чуть меньше чем 6. Подумай, почему.
√120 - почти 11.
В порядке возрастания (если нужно будет в обратном, поменяешь местами): 2, 3, √35, 6.5, √120, 13.
3) Трапеция прямоугольная, значит одна боковая сторона тоже образует прямые углы с основаниями, как у квадрата. Эта сторона будет меньше, так как расположена под прямым углом, следовательно равна 9. Большая - 15. Отсекаем прямоугольник, проводя высоту с другой стороны трапеции, остаётся треугольник со сторонами 9, 15 и одной неизвестной, которую находим по теореме Пифагора:
15^2 = x^2 + 9^2
15^2 - 9^2 = x^2
x^2 = 225 - 81 = 144;
x = √144
Большее основание = меньшее основание + X.
90 градусов.
Объяснение:
Пусть сторона квадрата равна . Тогда по условию, Теперь попробуем найти стороны треугольника PQD:
1) найти PD:
По теореме Пифагора
2) найти PQ и QD:
Проведем прямую проходящую через точку Q и параллельную BC, и отметим точки пересечения с квадратом ABCD как M и N где M∈AB, N∈CD и прямую проходящую через точку Q и параллельную AB, пересекающую квадрат в точках E и F где E∈BC, F∈AD.
Тогда из параллельности PQ||BC, FQ||CD и свойства пропорциональных отрезков получаем,
Следовательно из ,
Также из-за того, что AP<AM,
Заметим что, AMQF - прямоугольник, тогда
Теперь нам известны катеты прямоугольных треугольников PMQ и QFD, значит мы можем найти и их гипотенузы PQ и QD,
3) доказать что ∠PQD=90°:
Действительно,
Из обратной теоремы Пифагора следует что, ∠PQD - прямой угол.
4) доказать что ∠PQD - наибольший угол соответствующего треугольника:
Предположим обратное, допустим в треугольнике PQD есть угол больший 90°, но тогда сумма углов этого треугольника будет больше 180° - противоречие.
По итогу имеем то что, ∠PQD=90° - наибольший угол треугольника PQD.