)катет прямоугольного треугольника, прилежащий к углу 60 градусов , и гипотенуза в сумме составляют 32,7 см. найдите наибольшую сторону этого треугольника.
1. Наибольшая сторона прямоугольного треугольника - это гипотенуза. Обозначим ее Х; 2. Прилежащий к углу в 60° катет лежит против угла в 30°,⇒ он равен 1/2 гипотенузы, т.е. Х/2; 3. По условию: Х + Х/2 = 32,7см; 3Х/2 = 32,7см; Х=(32,7см·2):3 = 21,8см. Наибольшая сторона Х=21,8 см
2. Прилежащий к углу в 60° катет лежит против угла в 30°,⇒ он равен 1/2 гипотенузы, т.е. Х/2;
3. По условию: Х + Х/2 = 32,7см; 3Х/2 = 32,7см; Х=(32,7см·2):3 = 21,8см.
Наибольшая сторона Х=21,8 см