В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С 4 4 4 5 5 5 4 4 5 4 5 5 5 5 4 5 4 4 4 5 4 5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б 3 3 4 4 5 5 3 4 4 3 4 5 5 4 3 5 5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу: - где a-число оценок, b-число учеников.
В итоге и получаем: 1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5). Отсюда:
Второй
Для первого ученика существует 4 варианта: 2,3,4,5 Для второго ученика существует 4 варианта на каждый вариант первого ученика. То есть: - варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика. То есть: - варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
1 ученик - А
2 ученик - Б
Получаем:
А Б
4 5
5 4
5 5
4 4
В итоге,существует расставить 2 ученикам 2 оценки (4 и 5).
А если прибавить к ним еще одного ученика - С. То:
А Б С
4 4 4
5 5 5
4 4 5
4 5 5
5 5 4
5 4 4
4 5 4
5 4 5
В итоге получаем
А что если, оставим тех же 2 учеников, но добавим 1 оценку - 3?
А вот что получим:
А Б
3 3
4 4
5 5
3 4
4 3
4 5
5 4
3 5
5 3
В итоге, мы получили
Нет смысла, добавлять 3 ученика. Уже и так можно увидеть закономерность.
В 1 раз, мы имели 2 ученика и 2 оценки, отметим это как:
В 2 раз, мы имели 3 ученика и 2 оценки, отметим это как:
В 3 раз, мы имели 2 ученика и 3 оценки, отметим это как:
А теперь, выведем формулу:
- где a-число оценок, b-число учеников.
В итоге и получаем:
1 случай:
2 случай:
3 случай:
Теперь, вычислим наш случай в задаче. Есть 24 ученика = b, и 4 оценки=a (2,3,4,5).
Отсюда:
Второй
Для первого ученика существует 4 варианта:
2,3,4,5
Для второго ученика существует 4 варианта на каждый вариант первого ученика.
То есть:
- варианта событий.
Для третьего ученика существует 4 варианта на каждый вариант второго ученика.
То есть:
- варианта событий.
И так далее. В итоге получаем, что для 24 учеников существует ровно:
- вариантов событий.
1. а) (а - 5) (а - 3) = a^2 - 3a - 5a + 15 = a^2 - 8a + 15;
б) (5х + 4) (2х - 1) = 10x^2 - 5x + 8x - 4 = 10x^2 + 3x - 4;
в) (3р + 2с) (2р + 4с) = 6p^2 + 12pc + 4cp + 8c^2 = 6p^2 + 16pc + 8c^2;
г) (6 - 2) (b^2 + 2b - 3) = 4 (b^2 + 2b - 3) = 4b^2 + 8b - 12.
2. а) х (х - у) + а (х - у) = (x - y)(x + a);
б) 2а - 2b + са - сb = 2(a - b) + c(a - b) = (2 + c)(a - b).
3. 0,5х (4х^2 - 1) (5х^2 + 2) = (2x^2 - 0,5x)(5x^2 + 2) = 10x^5 + 4x^3 - 2,5x^3 - x = 10x^5 + 1,5x^3 - x;
4. а) 2а - ас - 2с + с^2 = a(2 - c) - c(2 - c) = (2 - c)(a - c);
6) bx + by - х - у - ах - ау = b(x + y) - (x + y) -a(x + y) = (x + y)(b - a - 1).
5. Ширина - а м;
Длина - а + 6 м;
а + 0,5 * 2 = а + 1 м - ширина бассейна вместе с дорожкой;
а + 6 + 0,5 * 2 = а + 7 - длина бассейна вместе с дорожкой;
(а + 1) * (а + 7) - а * (а + 6) = 15;
а^2 + a + 7a + 7 - a^2 - 6a = 15;
2a + 7 = 15;
2a = 8;
a = 4 м - ширина;
4 + 6 = 10 м - длина.
Объяснение: